Topics
Physical World and Measurement
Physical World
Units and Measurements
 International System of Units
 Measurement of Length
 Measurement of Mass
 Measurement of Time
 Accuracy, Precision and Least Count of Measuring Instruments
 Errors in Measurements
 Significant Figures
 Dimensions of Physical Quantities
 Dimensional Formulae and Dimensional Equations
 Dimensional Analysis and Its Applications
 Need for Measurement
 Units of Measurement
 Fundamental and Derived Units
 Length, Mass and Time Measurements
 Introduction of Units and Measurements
Kinematics
Laws of Motion
 Aristotle’s Fallacy
 The Law of Inertia
 Newton's First Law of Motion
 Newton’s Second Law of Motion
 Newton's Third Law of Motion
 Conservation of Momentum
 Equilibrium of a Particle
 Common Forces in Mechanics
 Circular Motion and Its Characteristics
 Solving Problems in Mechanics
 Static and Kinetic Friction
 Laws of Friction
 Inertia
 Intuitive Concept of Force
 Dynamics of Uniform Circular Motion  Centripetal Force
 Examples of Circular Motion (Vehicle on a Level Circular Road, Vehicle on a Banked Road)
 Lubrication  (Laws of Motion)
 Law of Conservation of Linear Momentum and Its Applications
 Rolling Friction
 Introduction of Motion in One Dimension
Motion in a Straight Line
 Position, Path Length and Displacement
 Average Velocity and Average Speed
 Instantaneous Velocity and Speed
 Kinematic Equations for Uniformly Accelerated Motion
 Acceleration (Average and Instantaneous)
 Relative Velocity
 Elementary Concept of Differentiation and Integration for Describing Motion
 Uniform and Nonuniform Motion
 Uniformly Accelerated Motion
 Positiontime, Velocitytime and Accelerationtime Graphs
 Position  Time Graph
 Relations for Uniformly Accelerated Motion (Graphical Treatment)
 Introduction of Motion in One Dimension
Work, Energy and Power
 Introduction of Work, Energy and Power
 Notions of Work and Kinetic Energy: the Workenergy Theorem
 Kinetic Energy
 Work Done by a Constant Force and a Variable Force
 Concept of Work
 The Concept of Potential Energy
 Conservation of Mechanical Energy
 Potential Energy of a Spring
 Various Forms of Energy : the Law of Conservation of Energy
 Power
 Collisions
 Non  Conservative Forces  Motion in a Vertical Circle
Motion in a Plane
 Scalars and Vectors
 Multiplication of Vectors by a Real Number or Scalar
 Addition and Subtraction of Vectors  Graphical Method
 Resolution of Vectors
 Vector Addition – Analytical Method
 Motion in a Plane
 Motion in a Plane with Constant Acceleration
 Projectile Motion
 Uniform Circular Motion (UCM)
 General Vectors and Their Notations
 Motion in a Plane  Average Velocity and Instantaneous Velocity
 Rectangular Components
 Scalar (Dot) and Vector (Cross) Product of Vectors
 Relative Velocity in Two Dimensions
 Cases of Uniform Velocity
 Cases of Uniform Acceleration Projectile Motion
 Motion in a Plane  Average Acceleration and Instantaneous Acceleration
 Angular Velocity
 Introduction of Motion in One Dimension
Motion of System of Particles and Rigid Body
Laws of Motion
Work, Energy and Power
Gravitation
 Kepler’s Laws
 Newton’s Universal Law of Gravitation
 The Gravitational Constant
 Acceleration Due to Gravity of the Earth
 Acceleration Due to Gravity Below and Above the Earth's Surface
 Acceleration Due to Gravity and Its Variation with Altitude and Depth
 Gravitational Potential Energy
 Escape Speed
 Earth Satellites
 Energy of an Orbiting Satellite
 Geostationary and Polar Satellites
 Weightlessness
 Escape Velocity
 Orbital Velocity of a Satellite
System of Particles and Rotational Motion
 Motion  Rigid Body
 Centre of Mass
 Motion of Centre of Mass
 Linear Momentum of a System of Particles
 Vector Product of Two Vectors
 Angular Velocity and Its Relation with Linear Velocity
 Torque and Angular Momentum
 Equilibrium of Rigid Body
 Moment of Inertia
 Theorems of Perpendicular and Parallel Axes
 Kinematics of Rotational Motion About a Fixed Axis
 Dynamics of Rotational Motion About a Fixed Axis
 Angular Momentum in Case of Rotation About a Fixed Axis
 Rolling Motion
 Momentum Conservation and Centre of Mass Motion
 Centre of Mass of a Rigid Body
 Centre of Mass of a Uniform Rod
 Rigid Body Rotation
 Equations of Rotational Motion
 Comparison of Linear and Rotational Motions
 Values of Moments of Inertia for Simple Geometrical Objects (No Derivation)
Properties of Bulk Matter
Gravitation
Thermodynamics
 Thermal Equilibrium
 Zeroth Law of Thermodynamics
 Heat, Internal Energy and Work
 First Law of Thermodynamics
 Specific Heat Capacity
 Thermodynamic State Variables and Equation of State
 Thermodynamic Process
 Heat Engine
 Refrigerators and Heat Pumps
 Second Law of Thermodynamics
 Reversible and Irreversible Processes
 Carnot Engine
 Isothermal Processes
 Adiabatic Processes
Behaviour of Perfect Gases and Kinetic Theory of Gases
Mechanical Properties of Solids
Mechanical Properties of Fluids
 Thrust and Pressure
 Pascal’s Law
 Variation of Pressure with Depth
 Atmospheric Pressure and Gauge Pressure
 Hydraulic Machines
 Streamline and Turbulent Flow
 Applications of Bernoulli’s Equation
 Viscous Force or Viscosity
 Reynold's Number
 Surface Tension
 Effect of Gravity on Fluid Pressure
 Terminal Velocity
 Critical Velocity
 Excess of Pressure Across a Curved Surface
 Introduction of Mechanical Properties of Fluids
 Archimedes' Principle
 Stoke's Law
 Equation of Continuity
 Torricelli's Law
Oscillations and Waves
Thermal Properties of Matter
 Heat and Temperature
 Measurement of Temperature
 Idealgas Equation and Absolute Temperature
 Thermal Expansion
 Specific Heat Capacity
 Calorimetry
 Change of State  Latent Heat Capacity
 Conduction
 Convection
 Radiation
 Newton’s Law of Cooling
 Qualitative Ideas of Black Body Radiation
 Wien's Displacement Law
 Stefan's Law
 Anomalous Expansion of Water
 Liquids and Gases
 Thermal Expansion of Solids
 Green House Effect
Thermodynamics
Kinetic Theory
 Molecular Nature of Matter
 Gases and Its Characteristics
 Equation of State of a Perfect Gas
 Work Done in Compressing a Gas
 Introduction of Kinetic Theory of an Ideal Gas
 Interpretation of Temperature in Kinetic Theory
 Law of Equipartition of Energy
 Specific Heat Capacities  Gases
 Mean Free Path
 Kinetic Theory of Gases  Concept of Pressure
 Assumptions of Kinetic Theory of Gases
 RMS Speed of Gas Molecules
 Degrees of Freedom
 Avogadro's Number
Oscillations
 Periodic and Oscillatory Motion
 Simple Harmonic Motion (S.H.M.)
 Simple Harmonic Motion and Uniform Circular Motion
 Velocity and Acceleration in Simple Harmonic Motion
 Force Law for Simple Harmonic Motion
 Energy in Simple Harmonic Motion
 Some Systems Executing Simple Harmonic Motion
 Damped Simple Harmonic Motion
 Forced Oscillations and Resonance
 Displacement as a Function of Time
 Periodic Functions
 Oscillations  Frequency
Waves
notes
Work Done By Friction
There is a misconception that the force of friction always does negative work. In reality, the work done by friction may be zero, positive or negative depending upon the situation.
In figure (a), when a block is pulled by a force F and the block does not move, the work done by friction is zero.
In figure (b), when a block is pulled by a force F on a stationary surface, the work done by the kinetic friction is negative.
In figure (c), block A is placed on the block B. When the block A is pulled with a force F, the friction force does negative work on block A and positive work on block B. The kinetic friction and displacement are oppositely directed in case of block A while in case of block B they are in the same direction.
Work Done By Gravity
Consider a block of mass m which slides down a smooth inclined plane of angle θ.
Let us assume the coordinate axes as shown in the figure, to specify the components of the two vectors, although the value of work will not depend on the orientation of the axes.
Now, the force of gravity, `bar F g= −mg hat j` and the displacement is given by
`bar S = Δx hat i + Δy hat j + Δz hat k`
The work done by gravity is
`W_g = bar F_g. bar s =mg hat j.(Δx hat i + Δ y hat j + Δz hat k)` or
`W_g =mg Δy ( hat j.hat i=0, hat j.hat j=1, hat j.hat k=0) `
since `Δy = y_f – y_i = h`
`W_g = mg (y_f  y_i) = + mgh`
If the block moves in the upward direction, then the work done by gravity is negative and is given by
Wg =  mgh
Application 3
A block of mass 10 kg is to be raised from the bottom to the top of incline 5m long and 3m off the ground at the top. Assuming frictionless surface, how much work is done by a force parallel to the incline pushing the block up at constant speed. (g = 10 m/s^{2})
Solution:
Here, we must first find the force with which the block must be pushed. We begin by drawing a F.B.D. of the block.
Here,
F = Applied force
mg = weight of the block
N = Normal reaction by the incline on the block.
Because the motion occurs at constant speed (i.e. no acceleration), the resultant force parallel to the plane must be zero. Thus
F − mg sin θ = 0
or F = mg sin θ =10 × 1035 = 60N
Then, the work done by F is
W = F. S cos θ = 60 × 5 = 300 J.
If a person were to raise the block vertically without using the incline, the work he would do would be the vertical force mg times the vertical distance
or (10 ×10 N) × (3m) = 300 J, the same as before.
The only difference is that with the incline he could do the job with a smaller force i.e. 60 N but he has to push the block a greater distance i.e. 5 m up the incline than he had to raise the block directly (3m).
This application also illustrates the point that machines (simple or complex) can not save the amount of work that has to be done to accomplish a job, they merely allow us to do the job with less effort.
Work done by a variable force

When the magnitude and direction of a force vary in three dimensions, it can be expressed as a function of the position vector `bar F(r)`, or in terms of the coordinates `barF (x,y,z)`.

If the displacement ds is small, we can take the force F (x) as approximately constant and the work done is then
`dW = bar F. ds` 
The variable force is more commonly encountered than the constant force.
For total work, we add all work done along small displacements
`W = lim_(x→0) ∑_(x_i) ^(x_f) F(x)Δx `
`W =∫_(x_i)^(x_f) F(x) dx`
Example: A force F = 3 x^{2} start acting on a particle which is initially at rest. Find the work done by the force during the displacement of the particle from x = 0 m to x = 2m.
Solution: We know that `W =∫_(x_i)^(x_f) F(x) dx`
`W =∫_0^2 3 x^2 .dx`
`W=(3(2)^3)/3(3(0)^3)/3=8 Nm`
description
 Work done by a constant force
 Work done by a variable force
1) Mathematical treatment
2) Graphical method