Topics
Units and Measurements
 Introduction of Units and Measurements
 System of Units
 Measurement of Length
 Measurement of Mass
 Measurement of Time
 Dimensions and Dimensional Analysis
 Accuracy, Precision and Uncertainty in Measurement
 Errors in Measurements
 Significant Figures
Mathematical Methods
 Vector Analysis
 Vector Operations
 Resolution of Vectors
 Multiplication of Vectors
 Introduction to Calculus
Motion in a Plane
 Introduction to Motion in a Plane
 Rectilinear Motion
 Motion in Two DimensionsMotion in a Plane
 Uniform Circular Motion (UCM)
Laws of Motion
 Introduction to Laws of Motion
 Aristotle’s Fallacy
 Newton’s Laws of Motion
 Inertial and Noninertial Frames of Reference
 Types of Forces
 Work Energy Theorem
 Principle of Conservation of Linear Momentum
 Collisions
 Impulse of Force
 Rotational Analogue of a Force  Moment of a Force Or Torque
 Couple and Its Torque
 Mechanical Equilibrium
 Centre of Mass
 Centre of Gravity
Gravitation
 Introduction to Gravitation
 Kepler’s Laws
 Newton’s Universal Law of Gravitation
 Measurement of the Gravitational Constant (G)
 Acceleration Due to Gravity (Earth’s Gravitational Acceleration)
 Variation in the Acceleration Due to Gravity with Altitude, Depth, Latitude and Shape
 Gravitational Potential and Potential Energy
 Earth Satellites
Mechanical Properties of Solids
 Introduction to Mechanical Properties of Solids
 Elastic Behavior of Solids
 Stress and Strain
 Hooke’s Law
 Elastic Modulus
 Stressstrain Curve
 Strain Energy
 Hardness
 Friction in Solids
Thermal Properties of Matter
 Introduction to Thermal Properties of Matter
 Heat and Temperature
 Measurement of Temperature
 Absolute Temperature and Ideal Gas Equation
 Thermal Expansion
 Specific Heat Capacity
 Calorimetry
 Change of State
 Heat Transfer
 Newton’s Law of Cooling
Sound
 Introduction to Sound
 Types of Waves
 Common Properties of All Waves
 Transverse Waves and Longitudinal Waves
 Mathematical Expression of a Wave
 The Speed of Travelling Waves
 Principle of Superposition of Waves
 Echo, Reverberation and Acoustics
 Qualities of Sound
 Doppler Effect
Optics
 Introduction to Ray Optics
 Nature of Light
 Ray Optics Or Geometrical Optics
 Reflection
 Refraction
 Total Internal Reflection
 Refraction at a Spherical Surface and Lenses
 Dispersion of Light and Prisms
 Some Natural Phenomena Due to Sunlight
 Defects of Lenses (Aberrations of Optical Images)
 Optical Instruments
 Optical Instruments: Simple Microscope
 Optical Instruments: Compound Microscope
 Optical Instruments: Telescope
Electrostatics
 Introduction to Electrostatics
 Electric Charges
 Basic Properties of Electric Charge
 Coulomb’s Law  Force Between Two Point Charges
 Principle of Superposition
 Electric Field
 Electric Flux
 Gauss’s Law
 Electric Dipole
 Continuous Distribution of Charges
Electric Current Through Conductors
 Electric Current
 Flow of Current Through a Conductor
 Drift Speed
 Ohm's Law (V = IR)
 Limitations of Ohm’s Law
 Electrical Power
 Resistors
 Specific Resistance (Resistivity)
 Variation of Resistance with Temperature
 Electromotive Force (emf)
 Combination of Cells in Series and in Parallel
 Types of Cells
 Combination of Resistors  Series and Parallel
Magnetism
 Introduction to Magnetism
 Magnetic Lines of Force and Magnetic Field
 The Bar Magnet
 Gauss' Law of Magnetism
 The Earth’s Magnetism
Electromagnetic Waves and Communication System
 EM Wave
 Electromagnetic Spectrum
 Propagation of EM Waves
 Introduction to Communication System
 Modulation
Semiconductors
 Introduction to Semiconductors
 Electrical Conduction in Solids
 Band Theory of Solids
 Intrinsic Semiconductor
 Extrinsic Semiconductor
 pn Junction
 A pn Junction Diode
 Semiconductor Devices
 Applications of Semiconductors and Pn Junction Diode
 Thermistor
Aristotle’s fallacy:
Aristotle, the Greek Scientist, held the view that an external force is required to keep a body in uniform motion.
His concept is outdated now because he considered only one side of motion and fails to explain the other, i.e. if the body is in motion, then how does it come to rest? There came the concept of the opposing external force of Friction.
What is the flaw in Aristotle’s argument?

The answer is: that a moving toy car comes to rest because the external force of friction on the car by the floor opposes its motion.

To counter this force, the child has to apply an external force on the car in the direction of motion.

When the car is in uniform motion, there is no net external force acting on it: the force by the child cancels the force (friction) by the floor.

The corollary is: if there were no friction, the child would not be required to apply any force to keep the toy car in uniform motion.

The opposing forces such as friction (solids) and viscous forces (for fluids) are always present in the natural world.

This explains why forces by external agencies are necessary to overcome the frictional forces to keep bodies in uniform motion.

Now we understand where Aristotle went wrong. He coded this practical experience in the form of a basic argument. To get at the true law of nature for forces and motion, one has to imagine a world in which uniform motion is possible with no frictional forces opposing. This is what Galileo did.
For example, a ball rolled on the floor comes to rest after some time due to the opposing force of friction
Conclusion:
An external force is required to keep a body in motion, only if resistive forces (like frictional & viscous forces) are present.