#### Topics

##### Number Systems

##### Number Systems

##### Algebra

##### Polynomials

##### Linear Equations in Two Variables

##### Algebraic Expressions

##### Algebraic Identities

##### Coordinate Geometry

##### Geometry

##### Introduction to Euclid’S Geometry

##### Lines and Angles

##### Triangles

##### Quadrilaterals

- Concept of Quadrilaterals - Sides, Adjacent Sides, Opposite Sides, Angle, Adjacent Angles and Opposite Angles
- Angle Sum Property of a Quadrilateral
- Types of Quadrilaterals
- Theorem: A Diagonal of a Parallelogram Divides It into Two Congruent Triangles.
- Another Condition for a Quadrilateral to Be a Parallelogram
- The Mid-point Theorem
- Theorem: A Diagonal of a Parallelogram Divides It into Two Congruent Triangles.
- Property: The Opposite Sides of a Parallelogram Are of Equal Length.
- Theorem : If Each Pair of Opposite Sides of a Quadrilateral is Equal, Then It is a Parallelogram.
- Property: The Opposite Angles of a Parallelogram Are of Equal Measure.
- Theorem: If in a Quadrilateral, Each Pair of Opposite Angles is Equal, Then It is a Parallelogram.
- Property: The diagonals of a parallelogram bisect each other. (at the point of their intersection)
- Theorem : If the Diagonals of a Quadrilateral Bisect Each Other, Then It is a Parallelogram

##### Area

##### Circles

- Concept of Circle - Centre, Radius, Diameter, Arc, Sector, Chord, Segment, Semicircle, Circumference, Interior and Exterior, Concentric Circles
- Angle Subtended by a Chord at a Point
- Perpendicular from the Centre to a Chord
- Circles Passing Through One, Two, Three Points
- Equal Chords and Their Distances from the Centre
- Angle Subtended by an Arc of a Circle
- Cyclic Quadrilateral

##### Constructions

##### Mensuration

##### Areas - Heron’S Formula

##### Surface Areas and Volumes

##### Statistics and Probability

##### Statistics

##### Probability

#### text

Examples: Sanya has a piece of land which is in the shape of a rhombus (see following Fig). She wants her one daughter and one son to work on the land and produce different crops. She divided the land in two equal parts. If the perimeter of the land is 400 m and one of the diagonals is 160 m, how much area each of them will get for their crops?

Solution : Let ABCD be the field.

Perimeter = 400 m

So, each side = 400 m ÷ 4 = 100 m.

i.e. AB = AD = 100 m.

Let diagonal BD = 160 m.

Then semi-perimeter s of ∆ ABD is given by

`s = (100 + 100 + 160)/2 m = 180 m`

Therefore, area of ∆ ABD

=`sqrt (180 (180 - 100)(180 - 100)(180 - 160))`

`= sqrt (180 * 80 * 80 * 20) m^2 = 4800 m^2`

If you would like to contribute notes or other learning material, please submit them using the button below.

#### Shaalaa.com | Application of Heron’s Formula in Finding Areas of Quadrilaterals.

to track your progress

#### Related QuestionsVIEW ALL [39]

Advertisement Remove all ads