Advertisement

Evaluation of Simple Integrals of the Following Types and Problems

notes

Integral of the type:
`int e^x [ f(x) + f'(x)] dx`
we have I = `int e^x[f(x) + f'(x)] dx ` 
= `int e^x f(x) dx + int e^x f'(x) dx`
= `I_1 + int e^x f'(x) dx , "where"  I_1 = int e^x f(x) dx`         ...(1)
Taking f(x) and `e^x` as the first function and second function, respectively, in `I_1` and integrating it by parts, we have `I_1`
= `f(x) e^x - int f'(x) e^x dx +C`
Substituting `I_1` in (1), we get 
I = `e^x f(x) - int f'(x) e^x dx + int e^x f'(x) dx +C = e^x f(x) + C`
Thus , `int e^x [f(x) + f'(x)] dx = e^x f(x) + C`

Integrals of some more types :
Some special types of standard integrals based on the technique of integration  by parts :
i) `int sqrt (x^2 - a^2) dx` 
`I = int sqrt (x^2 -a^2) dx = x/2 sqrt (x^2 - a^2) - a^2/2 log |x + sqrt (x^2 -a^2)| + C`

ii) `int sqrt (x^2 + a^2) dx`
= `1/2 x sqrt (x^2 + a^2) + a^2/2 log |x + sqrt (x^2 +a^2)| +C`

iii) `int sqrt (a^2 - x^2)dx = 1/2 x sqrt (a^2-x^2) + a^2/2  sin^(-1)  x/a+C`
Video link : https://youtu.be/vOQGYpfnC2U

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisement
Share
Notifications

View all notifications
Login
Create free account


      Forgot password?
View in app×