#### Topics

##### Relations and Functions

##### Relations and Functions

##### Inverse Trigonometric Functions

##### Algebra

##### Matrices

- Introduction of Operations on Matrices
- Inverse of a Matrix by Elementary Transformation
- Multiplication of Two Matrices
- Negative of Matrix
- Properties of Matrix Addition
- Transpose of a Matrix
- Subtraction of Matrices
- Addition of Matrices
- Symmetric and Skew Symmetric Matrices
- Types of Matrices
- Proof of the Uniqueness of Inverse
- Invertible Matrices
- Elementary Transformations
- Multiplication of Matrices
- Properties of Multiplication of Matrices
- Equality of Matrices
- Order of a Matrix
- Matrices Notation
- Introduction of Matrices
- Multiplication of a Matrix by a Scalar
- Properties of Scalar Multiplication of a Matrix
- Properties of Transpose of the Matrices

##### Calculus

##### Vectors and Three-dimensional Geometry

##### Determinants

- Applications of Determinants and Matrices
- Elementary Transformations
- Inverse of a Square Matrix by the Adjoint Method
- Properties of Determinants
- Determinant of a Square Matrix
- Determinants of Matrix of Order One and Two
- Introduction of Determinant
- Area of a Triangle
- Minors and Co-factors
- Determinant of a Matrix of Order 3 × 3
- Rule A=KB

##### Linear Programming

##### Continuity and Differentiability

- Derivative - Exponential and Log
- Concept of Differentiability
- Proof Derivative X^n Sin Cos Tan
- Infinite Series
- Higher Order Derivative
- Algebra of Continuous Functions
- Continuous Function of Point
- Mean Value Theorem
- Second Order Derivative
- Derivatives of Functions in Parametric Forms
- Logarithmic Differentiation
- Exponential and Logarithmic Functions
- Derivatives of Implicit Functions
- Derivatives of Inverse Trigonometric Functions
- Derivatives of Composite Functions - Chain Rule
- Concept of Continuity

##### Probability

##### Applications of Derivatives

- Maximum and Minimum Values of a Function in a Closed Interval
- Maxima and Minima
- Simple Problems on Applications of Derivatives
- Graph of Maxima and Minima
- Approximations
- Tangents and Normals
- Increasing and Decreasing Functions
- Rate of Change of Bodies or Quantities
- Introduction to Applications of Derivatives

##### Sets

##### Integrals

- Definite Integrals Problems
- Indefinite Integral Problems
- Comparison Between Differentiation and Integration
- Geometrical Interpretation of Indefinite Integrals
- Integrals of Some Particular Functions
- Indefinite Integral by Inspection
- Some Properties of Indefinite Integral
- Integration Using Trigonometric Identities
- Introduction of Integrals
- Evaluation of Definite Integrals by Substitution
- Properties of Definite Integrals
- Fundamental Theorem of Calculus
- Definite Integral as the Limit of a Sum
- Evaluation of Simple Integrals of the Following Types and Problems
- Methods of Integration: Integration by Parts
- Methods of Integration: Integration Using Partial Fractions
- Methods of Integration: Integration by Substitution
- Integration as an Inverse Process of Differentiation

##### Applications of the Integrals

##### Differential Equations

- Linear Differential Equations
- Solutions of Linear Differential Equation
- Homogeneous Differential Equations
- Differential Equations with Variables Separable Method
- Formation of a Differential Equation Whose General Solution is Given
- General and Particular Solutions of a Differential Equation
- Order and Degree of a Differential Equation
- Basic Concepts of Differential Equation
- Procedure to Form a Differential Equation that Will Represent a Given Family of Curves

##### Vectors

- Direction Cosines
- Properties of Vector Addition
- Geometrical Interpretation of Scalar
- Scalar Triple Product of Vectors
- Vector (Or Cross) Product of Two Vectors
- Scalar (Or Dot) Product of Two Vectors
- Position Vector of a Point Dividing a Line Segment in a Given Ratio
- Multiplication of a Vector by a Scalar
- Addition of Vectors
- Introduction of Vector
- Magnitude and Direction of a Vector
- Basic Concepts of Vector Algebra
- Vectors and Their Types
- Components of a Vector
- Section Formula
- Vector Joining Two Points
- Vectors Examples and Solutions
- Projection of a Vector on a Line
- Introduction of Product of Two Vectors

##### Three - Dimensional Geometry

- Three - Dimensional Geometry Examples and Solutions
- Introduction of Three Dimensional Geometry
- Equation of a Plane Passing Through Three Non Collinear Points
- Relation Between Direction Ratio and Direction Cosines
- Intercept Form of the Equation of a Plane
- Coplanarity of Two Lines
- Distance of a Point from a Plane
- Angle Between Line and a Plane
- Angle Between Two Planes
- Angle Between Two Lines
- Vector and Cartesian Equation of a Plane
- Shortest Distance Between Two Lines
- Equation of a Line in Space
- Direction Cosines and Direction Ratios of a Line
- Equation of a Plane in Normal Form
- Equation of a Plane Perpendicular to a Given Vector and Passing Through a Given Point
- Plane Passing Through the Intersection of Two Given Planes

##### Linear Programming

##### Probability

- Variance of a Random Variable
- Probability Examples and Solutions
- Conditional Probability
- Multiplication Theorem on Probability
- Independent Events
- Bayes’ Theorem
- Random Variables and Its Probability Distributions
- Mean of a Random Variable
- Bernoulli Trials and Binomial Distribution
- Introduction of Probability
- Properties of Conditional Probability

#### notes

1. Both are operations on functions.

2. Both satisfy the property of linearity, i.e.,

i) `d/(dx)[k_1f_1 (x) + k_2 f_2 (x)] = k_1 d/(dx) f_1(x) + k_2 d/(dx) f_2(x)`

ii) `int [k_1 f_1 (x)+k_2 f_2 (x)] dx = k_1 int f_1 (x) dx +k_2 int f_2 (x) dx `

Here `k_1` and `k_2` are constants.

3. We have already seen that all functions are not differentiable. Similarly, all functions are not integrable. We will learn more about nondifferentiable functions and nonintegrable functions in higher classes.

4. The derivative of a function, when it exists, is a unique function. The integral of a function is not so. However, they are unique upto an additive constant, i.e., any two integrals of a function differ by a constant.

5. When a polynomial function P is differentiated, the result is a polynomial whose degree is 1 less than the degree of P. When a polynomial function P is integrated, the result is a polynomial whose degree is 1 more than that of P.

6. We can speak of the derivative at a point. We never speak of the integral at a point, we speak of the integral of a function over an interval on which the integral.

7. The derivative of a function has a geometrical meaning, namely, the slope of the tangent to the corresponding curve at a point. Similarly, the indefinite integral of a function represents geometrically, a family of curves placed parallel to each other having parallel tangents at the points of intersection of the curves of the family with the lines orthogonal (perpendicular) to the axis representing the variable of integration.

8. The derivative is used for finding some physical quantities like the velocity of a moving particle, when the distance traversed at any time t is known. Similarly, the integral is used in calculating the distance traversed when the velocity at time t is known.

9. Differentiation is a process involving limits.

10. The process of differentiation and integration are inverses of each other.