Topics
Angle and Its Measurement
Trigonometry - 1
- Introduction of Trigonometry
- Trigonometric Functions with the Help of a Circle
- Signs of Trigonometric Functions in Different Quadrants
- Range of Cosθ and Sinθ
- Trigonometric Functions of Specific Angles
- Trigonometric Functions of Negative Angles
- Fundamental Identities
- Periodicity of Trigonometric Functions
- Domain and Range of Trigonometric Functions
- Graphs of Trigonometric Functions
- Polar Co-ordinate System
Trigonometry - 2
- Trigonometric Functions of Sum and Difference of Angles
- Trigonometric Functions of Allied Angels
- Trigonometric Functions of Multiple Angles
- Trigonometric Functions of Double Angles
- Trigonometric Functions of Triple Angle
- Factorization Formulae
- Formulae for Conversion of Sum Or Difference into Product
- Formulae for Conversion of Product in to Sum Or Difference
- Trigonometric Functions of Angles of a Triangle
Determinants and Matrices
- Definition and Expansion of Determinants
- Minors and Cofactors of Elements of Determinants
- Properties of Determinants
- Application of Determinants
- Cramer’s Rule
- Consistency of Three Equations in Two Variables
- Area of Triangle and Collinearity of Three Points
- Introduction of Matrices
- Types of Matrices
- Algebra of Matrices
- Properties of Matrix Multiplication
- Properties of Transpose of a Matrix
Straight Line
Circle
Conic Sections
Measures of Dispersion
Probability
Complex Numbers
Sequences and Series
Permutations and Combination
Methods of Induction and Binomial Theorem
Sets and Relations
Functions
Limits
Continuity
Differentiation
- Nth Term of Geometric Progression (G.P.)
- General Term of a Geometric Progression (G.P.)
- Sum of First N Terms of a Geometric Progression (G.P.)
- Sum of infinite terms of a G.P.
- Geometric Mean (G.M.)
Notes
Let us consider the following sequences: 2,4,8,16,...,
we have `a_1 = 2 , a_2/a_1 = 2 , a_3/a_2 = 2, a_4/a_3 = 2` and so on.
In above sequence the constant ratio is 2. Such sequences are called geometric sequence or geometric progression abbreviated as G.P.
1) General term of a G .P:
Let us consider a G.P. with first non-zero term ‘a’ and common ratio ‘r’. The second term is obtained by multiplying a by r, thus `a_2` = ar. Similarly, third term is obtained by multiplying `a_2` by r. Thus, `a_3 = a_2r = ar^2`, and so on.
The nth term of a G.P. is given by `a_n =ar^(n-1)`.
The series `a + ar + ar^2 + ... +` `ar^(n–1)`or `a + ar + ar^2 + ...+` `ar^(n–1) +...` are called finite or infinite geometric series, respectively.
2) Sum to n terms of a G .P.:
The first term of a G.P. be a and the common ratio be r.
`s_n =(a(1-r^n))/1-r` or `s_n = (a(r^n -1))/r-1`
3) Geometric Mean (G .M.):
The geometric mean of two positive numbers a
and b is the number `sqrt (ab)` .
`G_1, G_2,…, G_n` be n numbers between positive numbers a and b such that a,`G_1,G_2,G_3,…,G_n`, b is a G.P.
`G_n =ar^n =a (b/a)^(n/(n + 1))`