Topics
Number Systems
Algebra
Geometry
Trigonometry
Statistics and Probability
Coordinate Geometry
Mensuration
Internal Assessment
Real Numbers
Pair of Linear Equations in Two Variables
- Linear Equation in Two Variables
- Graphical Method of Solution of a Pair of Linear Equations
- Substitution Method
- Elimination Method
- Cross - Multiplication Method
- Equations Reducible to a Pair of Linear Equations in Two Variables
- Consistency of Pair of Linear Equations
- Inconsistency of Pair of Linear Equations
- Algebraic Conditions for Number of Solutions
- Simple Situational Problems
- Pair of Linear Equations in Two Variables
- Relation Between Co-efficient
Arithmetic Progressions
Quadratic Equations
- Quadratic Equations
- Solutions of Quadratic Equations by Factorization
- Solutions of Quadratic Equations by Completing the Square
- Nature of Roots of a Quadratic Equation
- Relationship Between Discriminant and Nature of Roots
- Situational Problems Based on Quadratic Equations Related to Day to Day Activities to Be Incorporated
- Application of Quadratic Equation
Polynomials
Circles
- Concept of Circle - Centre, Radius, Diameter, Arc, Sector, Chord, Segment, Semicircle, Circumference, Interior and Exterior, Concentric Circles
- Tangent to a Circle
- Number of Tangents from a Point on a Circle
- Concept of Circle - Centre, Radius, Diameter, Arc, Sector, Chord, Segment, Semicircle, Circumference, Interior and Exterior, Concentric Circles
Triangles
- Similar Figures
- Similarity of Triangles
- Basic Proportionality Theorem Or Thales Theorem
- Criteria for Similarity of Triangles
- Areas of Similar Triangles
- Right-angled Triangles and Pythagoras Property
- Similarity Triangle Theorem
- Application of Pythagoras Theorem in Acute Angle and Obtuse Angle
- Triangles Examples and Solutions
- Angle Bisector
- Similarity
- Ratio of Sides of Triangle
Constructions
Heights and Distances
Trigonometric Identities
Introduction to Trigonometry
Probability
Statistics
Lines (In Two-dimensions)
Areas Related to Circles
Surface Areas and Volumes
definition
In algebra, polynomial long division is an algorithm for dividing a polynomial by another polynomial of the same or lower degree, a generalised version of the familiar arithmetic technique called long division. It can be done easily by hand, because it separates an otherwise complex division problem into smaller ones.
notes
If p(x) and g(x) are any two polynomials with g(x) is not equal to 0, then we can find polynomials q(x) and r(x) such that p(x)= g(x) × q(x)+r(x). Here, p(x) is dividend, g(x) is divisor, q(x) is quotient and r(x) is the remiander.
Steps to divide polynomials with help of example `p(x)= 4x+x^3+x^4-3x^2+5, g(x)= x^2+1-x`
1) Arrange terms of dividend and divisor in decreasing order of their degrees. Therefore, `p(x)= x^4+x^3-3x^2+4x+5, g(x)= x^2-x+1`
2) Then use the Euclid formula to divide. Here by solving this we get that dividend is `x^4+x^3-3x^2+4x+5,` divisor is `x^2-x+1`, quotient is `x^2+x-3` and remainder is 8