Share
Notifications

View all notifications

Trigonometric Equations

Login
Create free account


      Forgot password?

notes

Equations involving trigonometric functions of a variable are called trigonometric equations.  The solutions of a trigonometric equation for which 0 ≤  x <  2π are called principal solutions.  The expression involving integer ‘n’ which gives all solutions of a trigonometric equation is called the general solution. 
How will solve a trigonometric equation `2"sin"^2 x+ 7"cos"  x= 5`? We shall follow few steps:
1) Reduce variables- Try to reduce the equation to one variable.
`2(1- cos^2 x)+ 7cos  x= 5`

2) Simplify equation
`2cos^2 x- 7cos x+ 3= 0`
`2cos^2 x- 6cos x- cos x+3= 0`
`2cos x (cos x-3)-1 (cos x- 3)= 0`
`(2cos x- 1) (cos x- 3)= 0`
`cos x= 1/2` or `cos x= 3`

3) Double check domain and range of varibles
The trigonometric function cos lies between -1, 1
therefore, cos x= `1/2`

we know that cos 60°= `1/2`
thus, x= 60°

4) Find all possible solutions
Principal soultions- 0 ≤ x ≤ 2π
60°, 300°
General solutions- 
x= n(2π) ± y
x= 2nπ ± y

theorem

Theorem 1: For any real numbers x and y,                 
sin x = sin y implies x = nπ + (–1)n y, where n ∈ Z
Proof :If sin x = sin y, then
sin x – sin y = 0

 or  `2cos  (x+y)/2 sin  (x-y)/2= 0`


which gives `cos   (x+y)/2= 0` or `sin  (x-y)/2= 0`


Therefore `(x+y)/2= (2n+1) π/2` or `(x-y)/2= nπ`, where n ∈ Z


i.e. x = (2n + 1) π – y  or x = 2nπ + y, where n∈Z
Hence x = (2n + 1)π + (–1)2n + 1 y or x = 2nπ +(–1)2n y, where n ∈ Z.
Combining these two results, we get x = nπ + (–1)n y, where n ∈ Z.

Theorem 2: For any real numbers x and y, cos x = cos y, implies x = 2nπ ± y, where n ∈ Z
Proof: If cos x = cos y, then
cos x – cos y = 0   i.e.,

-2 sin `(x+y)/2 sin  (x-y)/2= 0`


Thus, `sin  (x+y)/2= 0` or `sin  (x-y)/2= 0`


Therefore, `(x+y)/2= nπ`  or `(x-y)/2= nπ`, where n ∈ Z
i.e. x = 2nπ – y  or x = 2nπ + y, where n ∈ Z Hence x = 2nπ ± y, where n ∈ Z

Theorem 3:Prove that if x and y are not odd mulitple of  `π/2`, then
tan x = tan y implies x = nπ + y, where n ∈ Z
Proof : If tan x = tan y,   then   tan x – tan y = 0
or `(sin x cos y- cos x sin y)/(cos x cos y)= 0`
which gives sin (x – y) = 0
Therefore x – y = nπ, i.e., x = nπ + y, where n ∈ Z.

Shaalaa.com | Trigonometric equations

Shaalaa.com


Next video


Shaalaa.com


Trigonometric equations [00:19:05]
S
Series 1: playing of 1
0%


S
View in app×