ISC (Arts) Class 11CISCE

View all notifications

Ellipse - Latus Rectum

Create free account

      Forgot password?


  • Latus Rectum in Ellipse


Latus rectum of an ellipse is a line segment perpendicular to the major axis through any of the foci and whose end points lie on the ellipse in following fig.

To find the length of the latus rectum of the ellipse `x^2/a^2 + y^2/b^2 = 1`
Let the length of `AF_2` be l.
Then the coordinates of A are (c, l ),i.e., (ae, l )
Since A lies on the ellipse  `x^2/a^2 + y^2/b^2 = 1`,

`=> l^2 = b^2(1-e^2)`

But `e^2 = c^2/a^2 = (a^2 - b^2)/a^2 = 1- b^2/a^2`

Therefore `l^2 = b^4/a^2, i.e., l = b^2/a`
Since the ellipse is symmetric with respect to y-axis ,`AF_2` = `F_2B` and so length of the latus rectum is `(2b)^2/a.`

View in app×