#### Topics

##### Sets and Functions

##### Trigonometric Functions

- Concept of Angle
- Introduction of Trigonometric Functions
- Signs of Trigonometric Functions
- Domain and Range of Trigonometric Functions
- Trigonometric Functions of Sum and Difference of Two Angles
- Trigonometric Equations
- Truth of the Identity
- Negative Function Or Trigonometric Functions of Negative Angles
- 90 Degree Plusminus X Function
- Conversion from One Measure to Another
- 180 Degree Plusminus X Function
- 2X Function
- 3X Function
- Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications
- Graphs of Trigonometric Functions
- Transformation Formulae
- Values of Trigonometric Functions at Multiples and Submultiples of an Angle
- Sine and Cosine Formulae and Their Applications

##### Relations and Functions

- Cartesian Product of Sets
- Relation
- Concept of Functions
- Some Functions and Their Graphs
- Algebra of Real Functions
- Ordered Pairs
- Equality of Ordered Pairs
- Pictorial Diagrams
- Graph of Function
- Pictorial Representation of a Function
- Exponential Function
- Logarithmic Functions
- Brief Review of Cartesian System of Rectanglar Co-ordinates

##### Sets

- Sets and Their Representations
- The Empty Set
- Finite and Infinite Sets
- Equal Sets
- Subsets
- Power Set
- Universal Set
- Venn Diagrams
- Intrdouction of Operations on Sets
- Union Set
- Intersection of Sets
- Difference of Sets
- Complement of a Set
- Practical Problems on Union and Intersection of Two Sets
- Proper and Improper Subset
- Open and Close Intervals
- Operation on Set - Disjoint Sets
- Element Count Set

##### Algebra

##### Binomial Theorem

##### Sequence and Series

##### Linear Inequalities

##### Complex Numbers and Quadratic Equations

##### Permutations and Combinations

- Fundamental Principles of Counting
- Permutations
- Combination
- Introduction of Permutations and Combinations
- Permutation Formula to Rescue and Type of Permutation
- Smaller Set from Bigger Set
- Derivation of Formulae and Their Connections
- Simple Applications of Permutations and Combinations
- Factorial N (N!) Permutations and Combinations

##### Principle of Mathematical Induction

##### Coordinate Geometry

##### Straight Lines

##### Introduction to Three-dimensional Geometry

##### Conic Sections

- Sections of a Cone
- Concept of Circle
- Introduction of Parabola
- Standard Equations of Parabola
- Latus Rectum
- Introduction of Ellipse
- Relationship Between Semi-major Axis, Semi-minor Axis and the Distance of the Focus from the Centre of the Ellipse
- Special Cases of an Ellipse
- Eccentricity
- Standard Equations of an Ellipse
- Latus Rectum
- Introduction of Hyperbola
- Eccentricity
- Standard Equation of Hyperbola
- Latus Rectum
- Standard Equation of a Circle

##### Calculus

##### Limits and Derivatives

- Intuitive Idea of Derivatives
- Introduction of Limits
- Introduction to Calculus
- Algebra of Limits
- Limits of Polynomials and Rational Functions
- Limits of Trigonometric Functions
- Introduction of Derivatives
- Algebra of Derivative of Functions
- Derivative of Polynomials and Trigonometric Functions
- Derivative Introduced as Rate of Change Both as that of Distance Function and Geometrically
- Limits of Logarithmic Functions
- Limits of Exponential Functions
- Derivative of Slope of Tangent of the Curve
- Theorem for Any Positive Integer n
- Graphical Interpretation of Derivative
- Derive Derivation of x^n

##### Mathematical Reasoning

##### Mathematical Reasoning

##### Statistics and Probability

##### Statistics

- Measures of Dispersion
- Concept of Range
- Mean Deviation
- Introduction of Variance and Standard Deviation
- Standard Deviation
- Standard Deviation of a Discrete Frequency Distribution
- Standard Deviation of a Continuous Frequency Distribution
- Shortcut Method to Find Variance and Standard Deviation
- Introduction of Analysis of Frequency Distributions
- Comparison of Two Frequency Distributions with Same Mean
- Statistics Concept
- Central Tendency - Mean
- Central Tendency - Median
- Concept of Mode
- Measures of Dispersion - Quartile Deviation
- Standard Deviation - by Short Cut Method

##### Probability

#### description

- Latus Rectum in Ellipse

#### definition

Latus rectum of an ellipse is a line segment perpendicular to the major axis through any of the foci and whose end points lie on the ellipse in following fig.

To find the length of the latus rectum of the ellipse `x^2/a^2 + y^2/b^2 = 1`

Let the length of `AF_2` be l.

Then the coordinates of A are (c, l ),i.e., (ae, l )

Since A lies on the ellipse `x^2/a^2 + y^2/b^2 = 1`,

`(ae)^2/a^2+l^2/b^2=1`

`=> l^2 = b^2(1-e^2)`

But `e^2 = c^2/a^2 = (a^2 - b^2)/a^2 = 1- b^2/a^2`

Therefore `l^2 = b^4/a^2, i.e., l = b^2/a`

Since the ellipse is symmetric with respect to y-axis ,`AF_2` = `F_2B` and so length of the latus rectum is `(2b)^2/a.`

If you would like to contribute notes or other learning material, please submit them using the button below.

#### Related concepts

Advertisement Remove all ads