Transformation of Energy

Advertisements

Topics

  • Force, Work, Power and Energy
  • Force
    • Force
    • Translational and Rotational Motions
    • Moment (Turning Effect) of a Force Or Torque
    • Couple
    • Equilibrium of Bodies and Its Types
    • Principle of Moments
    • Centre of Gravity
    • Uniform Circular Motion (UCM)
    • Centripetal Force
    • Centrifugal Forces
  • Work, Energy and Power
  • Light
  • Sound
  • Machines
    • Machines
    • Simple Machines
    • Technical Terms Related to a Machine
    • Principle of Machine
    • Relationship between efficiency (ղ), mechanical advantage (M.A.) and velocity ratio (VR)
    • Lever
    • Kinds of Levers
    • Examples of Each Class of Levers as Found in the Human Body
    • Pulley
    • Single Fixed Pulley
    • Single Movable Pulley
    • Combination of Pulleys
    • Machines (Numerical)
  • Refraction of Light at Plane Surfaces
    • Refraction of Light
    • Law of Refraction of Light
    • Speed of Light
    • Relationship Between Refractive Index and Speed of Light (µ = C/V)
    • Principle of Reversibility of the Path of Light
    • Experimental Verification of Law of Refraction and Determination of Refractive Index of Glass
    • Refraction of Light Through a Rectangular Glass Slab
    • Multiple Images in a Thick Plane Glass Plate Or Thick Mirror
    • Prism
    • Refraction of Light Through a Prism
    • Real and Apparent Depth
    • Apparent Bending of a Stick Under Water
    • Some Consequences of Refraction of Light
    • Transmission of Light from a Denser Medium (Glass Or Water) to a Rarer Medium (Air) at Different Angles of Incidence
    • Critical Angle
    • Relationship Between the Critical Angle and the Refractive Index (µ = 1/ Sin C)
    • Total Internal Reflection
    • Total Internal Reflection in a Prism
    • Use of a Total Internal Reflecting Prism in Place of a Plane Mirror
    • Consequences of Total Internal Refraction
  • Electricity and Magnetism
  • Heat
  • Refraction Through a Lense
  • Modern Physics
  • Spectrum
    • Deviation Produced by a Triangular Prism
    • Colour in White Light with Their Wavelength and Frequency Range
    • Dispersion of Light Through Prism and Formation of Spectrum
    • Electromagnetic Spectrum
    • Different Radiation of Electromagnetic Spectrum
    • Gamma Rays
    • X rays
    • Ultraviolet Radiations
    • Visible Light
    • Infrared Radiations
    • Micro Waves
    • Radio Waves
    • Scattering of Light and Its Types
    • Applications of Scattering of Light
  • Sound
    • Sound
    • Difference Between the Sound and Light Waves
    • Reflection of Sound
    • Echoes
    • Determination of Speed of Sound by the Method of Echo
    • Use of Echoes
    • Natural Vibrations
    • Damped Vibrations
    • Forced Vibrations
    • Resonance
    • Demonstration of Resonance
    • Some Examples of Resonance
    • Properties of Sounds
    • Loudness and Intensity
    • Pitch (or shrillness) and frequency
    • Audibility and Range
    • Quality (Or Timbre) and Wave Form
    • Noise Pollution
    • Noise and Music
    • Sound (Numerical)
  • Current Electricity
  • Household Circuits
    • Transmission of Power from the Power Generating Station to the Consumer
    • Power Distribution to a House
    • House Wiring (Ring System)
    • Electric Fuse
    • Miniature Circuit Breaker (MCB)
    • Electric Switch
    • Circuits with Dual Control Switches (Staircase Wire)
    • Earthing (Grounding)
    • Three-pin Plug and Socket
    • Colour Coding of Live, Neutral, and Earth Wires
    • High Tension Wires
    • Precautions to Be Taken While Using Electricity
  • Electro Magnetism
  • Calorimetry
    • Heat and Its Unit
    • Temperatures
    • Factors Affecting the Quantity of Heat Absorbed to Increase the Temperature of a Body
    • Difference Between Heat and Temperature
    • Thermal Capacity (Heat Capacity)
    • Specific Heat Capacity
    • Relationship Between the Heat Capacity and Specfic Heat Capacity
    • Specific Heat Capacity of Some Common Substances
    • Calorimetry and Calorimeter
    • Principle of Method of Mixtures (or Principle of Calorimetry)
    • Natural Phenomena and Consequences of High Specific Heat Capacity of Water
    • Some Examples of High and Low Heat Capacity
    • Change of State of Matter
    • Melting and Freezing
    • Heating Curve of Ice During Melting
    • Change in Volume on Melting
    • Effect of Pressure on the Melting Point
    • Effect of Impurities on the Melting Point
    • Concept of Boiling (Vaporization)
    • Heating Curve for Water
    • Change in Volume on Boiling
    • Effect of Pressure on the Boiling Point
    • Effect of Impurities on the Boiling Point
    • Latent Heat and Specific Latent Heat
    • Specific Latent Heat of Fusion of Ice
    • Explanation of Latent Heat of Melting on the Basis of Kinetic Model
    • Natural Consequences of High Specific Latent Heat of Fusion of Ice
  • Radioactivity
    • Structure of the Atom and Nucleus
    • Atomic Model
    • Isotopes
    • Isobars
    • Isotones or Isoneutronic
    • Radioactivity
    • Radioactivity as Emission of Alpha, Beta, and Gamma Radiations
    • Properties of Alpha Particles
    • Properties of Beta Particles
    • Properties of Gamma Radiations
    • Changes Within the Nucleus in Alpha, Beta and Gamma Emission
    • Alpha Decay (Alpha Emission)
    • Beta Decay (Beta Emission)
    • Gamma Decay (Gamma Emission)
    • Uses of Radioactive Isotopes
    • Sources of Harmful Radiations
    • Hazards of Radioactive Substances and Radiation
    • Safety Precautions While Using Nuclear Energy
    • Background Radiations
    • Nuclear Energy
    • Nuclear Fission
    • Distinction Between the Radioactive Decay and Nuclear Fission
    • Nuclear Fusion
    • Distinction Between the Nuclear Fission and Nuclear Fusion
  1. Mechanical energy to electrical energy
  2. Electrical energy to mechanical energy
  3. Electrical energy to heat energy
  4. Heat energy to electrical energy
  5. Electrical energy to sound energy
  6. Sound energy to electrical energy
  7. Electrical energy to chemical energy
  8. Chemical energy to electrical energy
  9. Chemical energy to light energy
  10. Light energy to chemical energy
  11. Electrical energy to light energy
  12. Light energy to electrical energy
  13. Heat energy to mechanical energy
  14. Chemical energy to heat energy
  15. Chemical energy to mechanical energy
  16. Electrical energy to magnetic energy
  17. Nuclear energy to electrical energy
  18. Mechanical energy to heat energy

Notes

Energy cannot be made not cannot be destroyed it can only be converted from one form to another.

yes, Various energy forms are interconvertible. some examples are given below:

  • Sound energy is converted into electrical energy in a microphone.
  • Electrical energy is converted into sound energy in a loud speaker.
  • Electrical energy is converted into mechanical energy in a motor.
  • Mechanical energy is converted into electrical energy in a generator.
  • Potential energy is converted into kinetic energy when a stone is dropped.  
  • Electrical energy is converted into heat energy in a room heater.
  • Chemical energy is converted into sound, light and heat energy while firing crackers.  
If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisements
Share
Notifications



      Forgot password?
Use app×