Topics
Force, Work, Power and Energy
Force
Work, Power and Energy
- Introduction of Work
- Concept of Work
- Measurement of Work
- Work Done by the Force of Gravity (W = mgh)
- Power
- Concept of Energy
- Mechanical Energy and Its Types
- Potential Energy
- Types of Potential Energy
- Gravitational Potential Energy
- Kinetic Energy
- Types of Kinetic Energy
- Conversion of Potential Energy into Kinetic Energy
- Transformation of Energy
- Different Forms of Energy
- Principle of Conservation of Energy
- Theoretical verification of K + U = Constant for a freely falling body
- Application of Principle of Conservation of Energy to a Simple Pendulum
Machines
Light
Refraction of Light Through Plane Surface
- Refraction of Light
- Law of Refraction of Light
- Refractive Index
- Speed of Light
- Relationship Between Refractive Index and Speed of Light (µ = C/V)
- Principle of Reversibility of the Path of Light
- Experimental Verification of Law of Refraction
- Refraction of Light Through a Rectangular Glass Slab
- Multiple Images in a Thick Plane Glass Plate Or Thick Mirror
- Concept of Prism
- Refraction of Light Through a Prism
- Real and Apparent Depth
- Apparent Bending of a Stick Under Water
- Transmission of Light from a Denser Medium (Glass Or Water) to a Rarer Medium (Air) at Different Angles of Incidence
- Critical Angle
- Relationship Between the Critical Angle and the Refractive Index (µ = 1/ Sin C)
- Total Internal Reflection
- Total Internal Reflection in a Prism
Spectrum
- Deviation Produced by a Triangular Prism
- Colour in White Light with Their Wavelength and Frequency Range
- Concept of Prism
- Dispersion of Light Through Prism and Formation of Spectrum
- Electromagnetic Spectrum
- Different Radiation of Electromagnetic Spectrum
- Gamma Rays
- X rays
- Ultraviolet Radiations
- Visible Light
- Infrared Radiations
- Micro Waves
- Radio Waves
- Scattering of Light and Its Types
- Applications of Scattering of Light
Refraction of Light Through a Lense
- Lens
- Action of a Lens as a Set of Prisms
- Spherical Lens
- Refraction of Light Through the Equiconvex Lens and Equiconcave Lens
- Guideline for Image Formation Due to Refraction Through a Convex and Concave Lens
- Formation of Image by Reflection: Real and Virtual Image
- Images Formed by Sperical Lenses
- Concave Lens
- Images Formed Due to Refraction Through a Concave Lens
- Convex Lens
- Images Formed Due to Refraction Through a Convex Lens
- Differentiation Between Concave and Convex Lens
- Sign Convention for Spherical Lenses
- Lens Formula
- Magnification Due to Spherical Lenses
- Power of a Lens
- Magnifying Glass Or Simple Microscope
- Experimental Determination of Focal Length of Convex Lens
Sound
- Sound
- Difference Between the Sound and Light Waves
- Characteristics of a Sound Wave
- Reflection of Sound
- Echoes
- Natural Vibrations
- Damped Vibrations
- Forced Vibrations
- Resonance
- Demonstration of Resonance
- Properties of Sounds
- Loudness and Intensity
- Pitch (or shrillness) and frequency
- Audibility and Range
- Quality (Or Timbre) and Wave Form
- Noise Pollution
- Noise and Music
- Sound (Numerical)
Electricity and Magnetism
Current Electricity
- Electric Charge
- Electric Current
- Electric Circuit
- Potential and Potential Difference
- Resistance (R)
- Ohm's Law
- Experimental Verification of Ohm’s Law
- Ohmic and Non-ohmic Resistors
- Electrical Resistivity and Electrical Conductivity
- Choice of Material of a Wire
- Superconductors
- Electro-motive Force (E.M.F.) of a Cell
- Terminal Voltage of a Cell
- Internal Resistance of a Cell
- System of Resistors
- Resistors in Series
- Resistances in Parallel
- Series Connection of Parallel Resistors
- Parallel Connection of Series Resistors
Electrical Power and Energy and Household Circuits
- Electrical Energy
- Measurement of Electrical Energy (Expression W = QV = Vlt)
- Electrical Power
- Commercial Unit of Electrical Energy
- Power Rating of Appliances
- Household Consumption of Electric Energy
- Effects of Electric Current
- Heating Effect of Electric Current
- Transmission of Power from the Power Generating Station to the Consumer
- Household Electrical Circuits
- House Wiring (Ring System)
- Electric Fuse
- Miniature Circuit Breaker (MCB)
- Electric Switch
- Circuits with Dual Control Switches (Staircase Wire)
- Earthing (Grounding)
- Three-pin Plug and Socket
- Colour Coding of Live, Neutral, and Earth Wires
- High Tension Wires
- Precautions to Be Taken While Using Electricity
Electro Magnetism
- Effects of Electric Current
- Magnetic Effect of Electric Current
- Magnetic Field Due to a Current Carrying Straight Conductor
- Rule to Find the Direction of Magnetic Field
- Magnetic Field Due to Current in a Loop (Or Circular Coil)
- Magnetic Field Due to a Current Carving Cylindrical Coil (or Solenoid)
- Electromagnet
- Making of an Electromagnet
- Permanent Magnet and Electromagnet
- Applications of Electromagnets
- Force on a Current Carrying Conductor in a Magnetic Field
- Direct Current Motor
- Electromagnetic Induction
- Faraday's Laws of Electromagnetic Induction
- Alternating Current (A.C.) Generator
- Distinction Between an A.C. Generator and D.C. Motor
- Types of current: Alternating Current (A.C.) and Direct Current (D.C.)
- Transformer
- Types of Transformer
Heat
- Heat and Its Unit
- Temperatures
- Heat and Temperature
- Heat Capacity Or Thermal Capacity
- Specific Heat Capacity
- Relationship Between the Heat Capacity and Specfic Heat Capacity
- Calorimetry and Calorimeter
- Natural Phenomena and Consequences of High Specific Heat Capacity of Water
- Some Examples of High and Low Heat Capacity
- Change of State of Matter
- Concept of Melting (Fusion)
- Concept of Freezing (Solidification)
- Concept of Boiling (Vaporization)
- Concept of Condensation (Liquefaction)
- Latent Heat and Specific Latent Heat
- Specific Latent Heat of Fusion of Ice
- Explanation of Latent Heat of Melting on the Basis of Kinetic Model
Modern Physics
- Atoms: Building Blocks of Matter
- Structure of an Atom
- Discovery of Charged Particles in Matter
- Nucleus
- Atomic Mass
- Atomic Number (Z), Mass Number (A), and Number of Neutrons (n)
- Isotopes
- Isobars
- Isotones or Isoneutronic
- Radioactivity
- Radioactivity as Emission of Alpha, Beta, and Gamma Radiations
- Properties of Alpha Particles
- Properties of Beta Particles
- Properties of Gamma Radiations
- Changes Within the Nucleus in Alpha, Beta and Gamma Emission
- Alpha Decay (Alpha Emission)
- Beta Decay (Beta Emission)
- Gamma Decay (Gamma Emission)
- Uses of Radioactive Isotopes
- Radiation
- Nuclear Energy
- Safety Precautions While Using Nuclear Energy
- Nuclear Fission
- Nuclear Fusion
- Distinction Between the Radioactive Decay and Nuclear Fission
- Distinction Between the Nuclear Fission and Nuclear Fusion
description
- Pitch (or shrillness)
- Examples of change in pitch
- Subjective nature of pitch and objective nature of frequency
If you would like to contribute notes or other learning material, please submit them using the button below.
Related concepts
Advertisement Remove all ads