Advertisement

RD Sharma solutions for Class 12 Maths chapter 20 - Definite Integrals [Latest edition]

Chapters

Class 12 Maths - Shaalaa.com

Chapter 20: Definite Integrals

Exercise 20.1Exercise 20.2Exercise 20.3Exercise 20.4Exercise 20.5Exercise 20.6Very Short AnswersMCQRevision Exercise
Exercise 20.1 [Pages 16 - 18]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals Exercise 20.1 [Pages 16 - 18]

Exercise 20.1 | Q 1 | Page 16
\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]
Exercise 20.1 | Q 2 | Page 16
\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]
Exercise 20.1 | Q 3 | Page 16
\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]
Exercise 20.1 | Q 4 | Page 16
\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]
Exercise 20.1 | Q 5 | Page 16
\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]
Exercise 20.1 | Q 6 | Page 16
\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]
Exercise 20.1 | Q 7 | Page 16
\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]
Exercise 20.1 | Q 8 | Page 16
\[\int\limits_0^\infty e^{- x} dx\]
Exercise 20.1 | Q 9 | Page 16
\[\int\limits_0^1 \frac{x}{x + 1} dx\]
Exercise 20.1 | Q 10 | Page 16
\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]
Exercise 20.1 | Q 11 | Page 16

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]

Exercise 20.1 | Q 12 | Page 16
\[\int\limits_0^{\pi/4} \sec x dx\]
Exercise 20.1 | Q 13 | Page 16
\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]
Exercise 20.1 | Q 14 | Page 16
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
Exercise 20.1 | Q 15 | Page 16
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]
Exercise 20.1 | Q 16 | Page 16
\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]
Exercise 20.1 | Q 17 | Page 16
\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]
Exercise 20.1 | Q 18 | Page 16
\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]
Exercise 20.1 | Q 19 | Page 16
\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]
Exercise 20.1 | Q 20 | Page 16
\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]
Exercise 20.1 | Q 21 | Page 16
\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]
Exercise 20.1 | Q 22 | Page 16
\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 

Exercise 20.1 | Q 23 | Page 16
\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]
Exercise 20.1 | Q 24 | Page 16
\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]
Exercise 20.1 | Q 25 | Page 16
\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]
Exercise 20.1 | Q 26 | Page 16

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]
Exercise 20.1 | Q 27 | Page 17
\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]
Exercise 20.1 | Q 28 | Page 17
\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]
Exercise 20.1 | Q 29 | Page 17
\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]
Exercise 20.1 | Q 30 | Page 17
\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]
Exercise 20.1 | Q 31 | Page 17
\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]
Exercise 20.1 | Q 32 | Page 17
\[\int\limits_1^2 \log\ x\ dx\]
Exercise 20.1 | Q 33 | Page 17
\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]
Exercise 20.1 | Q 34 | Page 17
\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]
Exercise 20.1 | Q 35 | Page 17
\[\int\limits_1^e \frac{\log x}{x} dx\]
Exercise 20.1 | Q 36 | Page 17
\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]
Exercise 20.1 | Q 37 | Page 17
\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]
Exercise 20.1 | Q 38 | Page 17
\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]
Exercise 20.1 | Q 39 | Page 17
\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]
Exercise 20.1 | Q 40 | Page 17
\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]
Exercise 20.1 | Q 41 | Page 17
\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]
Exercise 20.1 | Q 42 | Page 17
\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]
Exercise 20.1 | Q 43 | Page 17
\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]
Exercise 20.1 | Q 44 | Page 17
\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]
Exercise 20.1 | Q 45 | Page 17
\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]
Exercise 20.1 | Q 46 | Page 17
\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]
Exercise 20.1 | Q 47 | Page 17
\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]
Exercise 20.1 | Q 48 | Page 17
\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]
Exercise 20.1 | Q 49 | Page 17

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 

Exercise 20.1 | Q 50 | Page 17
\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
Exercise 20.1 | Q 51 | Page 17
\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]
Exercise 20.1 | Q 52 | Page 17
\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
Exercise 20.1 | Q 53 | Page 17
\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]
Exercise 20.1 | Q 54 | Page 17
\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]
Exercise 20.1 | Q 55 | Page 17
\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]
Exercise 20.1 | Q 56 | Page 17
\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]
Exercise 20.1 | Q 57 | Page 17
\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]
Exercise 20.1 | Q 58 | Page 17
\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]
Exercise 20.1 | Q 59 | Page 17

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
Exercise 20.1 | Q 60 | Page 17

\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.

Exercise 20.1 | Q 61 | Page 18

\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.

Exercise 20.1 | Q 62 | Page 18
\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]
Exercise 20.1 | Q 63 | Page 18
\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
Exercise 20.1 | Q 64 | Page 18
\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
Exercise 20.1 | Q 65 | Page 18
\[\int_0^1 x\log\left( 1 + 2x \right)dx\]
Exercise 20.1 | Q 66 | Page 18
\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]
Exercise 20.1 | Q 67 | Page 18
\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]
Exercise 20.1 | Q 68 | Page 18
\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]
Advertisement
Exercise 20.2 [Pages 38 - 40]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals Exercise 20.2 [Pages 38 - 40]

Exercise 20.2 | Q 1 | Page 38
\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]
Exercise 20.2 | Q 2 | Page 38
\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]
Exercise 20.2 | Q 3 | Page 38
\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]
Exercise 20.2 | Q 4 | Page 38
\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]
Exercise 20.2 | Q 5 | Page 38
\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]
Exercise 20.2 | Q 6 | Page 38
\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]
Exercise 20.2 | Q 7 | Page 38
\[\int\limits_0^1 x e^{x^2} dx\]
Exercise 20.2 | Q 8 | Page 38
\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]
Exercise 20.2 | Q 9 | Page 38
\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]
Exercise 20.2 | Q 10 | Page 38
\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]
Exercise 20.2 | Q 11 | Page 39
\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 

Exercise 20.2 | Q 12 | Page 39
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
Exercise 20.2 | Q 13 | Page 39
\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]
Exercise 20.2 | Q 14 | Page 39
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
Exercise 20.2 | Q 15 | Page 39
\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]
Exercise 20.2 | Q 16 | Page 39
\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]
Exercise 20.2 | Q 17 | Page 39
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
Exercise 20.2 | Q 18 | Page 39
\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]
Exercise 20.2 | Q 19 | Page 39
\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]
Exercise 20.2 | Q 20 | Page 39
\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]
Exercise 20.2 | Q 21 | Page 39
\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]
Exercise 20.2 | Q 22 | Page 39
\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]
Exercise 20.2 | Q 23 | Page 39
\[\int\limits_0^1 \tan^{- 1} x\ dx\]
Exercise 20.2 | Q 24 | Page 39
\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
Exercise 20.2 | Q 25 | Page 39
\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]
Exercise 20.2 | Q 26 | Page 39
\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]
Exercise 20.2 | Q 27 | Page 39
\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]
Exercise 20.2 | Q 28 | Page 39
\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]
Exercise 20.2 | Q 29 | Page 39
\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]
Exercise 20.2 | Q 30 | Page 39
\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]
Exercise 20.2 | Q 31 | Page 39
\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]
Exercise 20.2 | Q 32 | Page 39
\[\int\limits_0^1 x \tan^{- 1} x\ dx\]
Exercise 20.2 | Q 33 | Page 39
\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]
Exercise 20.2 | Q 34 | Page 39
\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]
Exercise 20.2 | Q 35 | Page 39
\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]
Exercise 20.2 | Q 36 | Page 39
\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]
Exercise 20.2 | Q 37 | Page 39
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
Exercise 20.2 | Q 38 | Page 39
\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]
Exercise 20.2 | Q 39 | Page 39
\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]
Exercise 20.2 | Q 40 | Page 39
\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
Exercise 20.2 | Q 41 | Page 39
\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]
Exercise 20.2 | Q 42 | Page 39
\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]
Exercise 20.2 | Q 43 | Page 39
\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]
Exercise 20.2 | Q 44 | Page 39

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]

Exercise 20.2 | Q 45 | Page 40
\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]
Exercise 20.2 | Q 46 | Page 40
\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]
Exercise 20.2 | Q 47 | Page 40
\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]
Exercise 20.2 | Q 48 | Page 40
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
Exercise 20.2 | Q 49 | Page 40
\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]
Exercise 20.2 | Q 50 | Page 39
\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]
Exercise 20.2 | Q 51 | Page 40
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
Exercise 20.2 | Q 52 | Page 40
\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
Exercise 20.2 | Q 53 | Page 40
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]
Exercise 20.2 | Q 54 | Page 40
\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]
Exercise 20.2 | Q 55 | Page 40
\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]
Exercise 20.2 | Q 56 | Page 40
\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]
Exercise 20.2 | Q 57 | Page 40
\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
Exercise 20.2 | Q 58 | Page 40
\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]
Exercise 20.2 | Q 59 | Page 40
\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
Exercise 20.2 | Q 60 | Page 40
\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]
Exercise 20.2 | Q 61 | Page 40
\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
Exercise 20.2 | Q 62 | Page 40
\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]
Advertisement
Exercise 20.3 [Pages 55 - 56]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals Exercise 20.3 [Pages 55 - 56]

Exercise 20.3 | Q 1.1 | Page 55
\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \begin{cases}4x + 3 & , & \text{if }1 \leq x \leq 2 \\3x + 5 & , & \text{if }2 \leq x \leq 4\end{cases}\]

 

Exercise 20.3 | Q 1.2 | Page 55
\[\int\limits_0^9 f\left( x \right) dx, where f\left( x \right) \begin{cases}\sin x & , & 0 \leq x \leq \pi/2 \\ 1 & , & \pi/2 \leq x \leq 3 \\ e^{x - 3} & , & 3 \leq x \leq 9\end{cases}\]
Exercise 20.3 | Q 1.3 | Page 55

\[\int\limits_1^4 f\left( x \right) dx, where f\left( x \right) = \begin{cases}7x + 3 & , & \text{if }1 \leq x \leq 3 \\ 8x & , & \text{if }3 \leq x \leq 4\end{cases}\]

Exercise 20.3 | Q 2 | Page 56

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]
Exercise 20.3 | Q 3 | Page 56

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]
Exercise 20.3 | Q 4 | Page 56

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]
Exercise 20.3 | Q 5 | Page 56

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]
Exercise 20.3 | Q 6 | Page 56

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 

Exercise 20.3 | Q 7 | Page 56

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 

Exercise 20.3 | Q 8 | Page 56

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 

Exercise 20.3 | Q 9 | Page 56

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 

Exercise 20.3 | Q 10 | Page 56

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]
Exercise 20.3 | Q 11 | Page 56

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]
Exercise 20.3 | Q 12 | Page 56

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 

Exercise 20.3 | Q 13 | Page 56

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]
Exercise 20.3 | Q 14 | Page 56

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 

Exercise 20.3 | Q 15 | Page 56

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 

Exercise 20.3 | Q 16 | Page 56

Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]
Exercise 20.3 | Q 17 | Page 56

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 

Exercise 20.3 | Q 18 | Page 56

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 

Exercise 20.3 | Q 19 | Page 56

Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]
Exercise 20.3 | Q 20 | Page 56
\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 

Exercise 20.3 | Q 21 | Page 56
\[\int_{- 2}^2 x e^\left| x \right| dx\]
Exercise 20.3 | Q 22 | Page 56
\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 

Exercise 20.3 | Q 23 | Page 56
\[\int_0^\pi \cos x\left| \cos x \right|dx\]
Exercise 20.3 | Q 24 | Page 56
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]
Exercise 20.3 | Q 25 | Page 56
\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]
Exercise 20.3 | Q 26 | Page 56
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]
Exercise 20.3 | Q 27 | Page 56
\[\int_0^2 2x\left[ x \right]dx\]
Exercise 20.3 | Q 28 | Page 56
\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]
Advertisement
Exercise 20.4 [Page 61]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals Exercise 20.4 [Page 61]

Exercise 20.4 | Q 1 | Page 61

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 

Exercise 20.4 | Q 2 | Page 61

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 

Exercise 20.4 | Q 3 | Page 61

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]
Exercise 20.4 | Q 4 | Page 61

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 

Exercise 20.4 | Q 5 | Page 61

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 

Exercise 20.4 | Q 6 | Page 61

Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`
Exercise 20.4 | Q 7 | Page 61

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 

Exercise 20.4 | Q 8 | Page 61

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]
Exercise 20.4 | Q 9 | Page 61

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]
Exercise 20.4 | Q 10 | Page 61

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]

Exercise 20.4 | Q 11 | Page 61
\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 

Exercise 20.4 | Q 12 | Page 61
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Exercise 20.4 | Q 13 | Page 61
\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]
Exercise 20.4 | Q 14 | Page 61
\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]
Exercise 20.4 | Q 15 | Page 61
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]
Exercise 20.4 | Q 16 | Page 61

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 

Advertisement
Exercise 20.5 [Pages 94 - 96]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals Exercise 20.5 [Pages 94 - 96]

Exercise 20.5 | Q 1 | Page 94
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x}\]

 

Exercise 20.5 | Q 2 | Page 94
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]
Exercise 20.5 | Q 3 | Page 94
\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]
Exercise 20.5 | Q 4 | Page 94
\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]
Exercise 20.5 | Q 5 | Page 94
\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 

Exercise 20.5 | Q 6 | Page 94
\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]
Exercise 20.5 | Q 7 | Page 95
\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]
Exercise 20.5 | Q 8 | Page 95
\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]
Exercise 20.5 | Q 9 | Page 95
\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 

Exercise 20.5 | Q 10 | Page 95
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Exercise 20.5 | Q 11 | Page 95
\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]
Exercise 20.5 | Q 12 | Page 95
\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]
Exercise 20.5 | Q 13 | Page 95
\[\int\limits_0^\pi x \sin^3 x\ dx\]
Exercise 20.5 | Q 14 | Page 95
\[\int\limits_0^\pi x \log \sin x\ dx\]
Exercise 20.5 | Q 15 | Page 95
\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]
Exercise 20.5 | Q 16 | Page 95
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]
Exercise 20.5 | Q 17 | Page 95
\[\int\limits_0^\pi x \cos^2 x\ dx\]
Exercise 20.5 | Q 18 | Page 95

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 

Exercise 20.5 | Q 19 | Page 95

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]
Exercise 20.5 | Q 20 | Page 95

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]
Exercise 20.5 | Q 21 | Page 95

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]
Exercise 20.5 | Q 22 | Page 95
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Exercise 20.5 | Q 23 | Page 95
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]
Exercise 20.5 | Q 24 | Page 95
\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]
Exercise 20.5 | Q 25 | Page 95
\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]
Exercise 20.5 | Q 26 | Page 95
\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]
Exercise 20.5 | Q 27 | Page 95
\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]
Exercise 20.5 | Q 28 | Page 95
\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]
Exercise 20.5 | Q 29 | Page 95

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]
Exercise 20.5 | Q 30 | Page 95

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]
Exercise 20.5 | Q 31 | Page 95

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
Exercise 20.5 | Q 32 | Page 95

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]
Exercise 20.5 | Q 33 | Page 95
\[\int\limits_0^2 x\sqrt{2 - x} dx\]
Exercise 20.5 | Q 34 | Page 95
\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 

Exercise 20.5 | Q 35 | Page 95

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 

Exercise 20.5 | Q 36 | Page 95

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]
Exercise 20.5 | Q 37 | Page 95

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]

Exercise 20.5 | Q 38 | Page 95

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 

Exercise 20.5 | Q 39 | Page 95

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 

Exercise 20.5 | Q 40 | Page 95

`int_0^(2a)f(x)dx`

Exercise 20.5 | Q 41 | Page 95
\[\int_0^1 | x\sin \pi x | dx\]
Exercise 20.5 | Q 42 | Page 95

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]
Exercise 20.5 | Q 43 | Page 96

If `f` is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 

Exercise 20.5 | Q 44 | Page 96

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]
Exercise 20.5 | Q 45.1 | Page 96

If f is an integrable function, show that

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]

Exercise 20.5 | Q 45.2 | Page 96

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 

Exercise 20.5 | Q 46 | Page 96

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 

Exercise 20.5 | Q 47 | Page 96

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]
Exercise 20.5 | Q 48 | Page 96

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]
Exercise 20.5 | Q 49 | Page 96

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]
Advertisement
Exercise 20.6 [Pages 110 - 111]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals Exercise 20.6 [Pages 110 - 111]

Exercise 20.6 | Q 1 | Page 110
\[\int\limits_0^3 \left( x + 4 \right) dx\]
Exercise 20.6 | Q 2 | Page 110
\[\int\limits_0^2 \left( x + 3 \right) dx\]
Exercise 20.6 | Q 3 | Page 110
\[\int\limits_1^3 \left( 3x - 2 \right) dx\]
Exercise 20.6 | Q 4 | Page 110
\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]
Exercise 20.6 | Q 5 | Page 110
\[\int\limits_0^5 \left( x + 1 \right) dx\]
Exercise 20.6 | Q 6 | Page 110
\[\int\limits_1^3 \left( 2x + 3 \right) dx\]
Exercise 20.6 | Q 7 | Page 110
\[\int\limits_3^5 \left( 2 - x \right) dx\]
Exercise 20.6 | Q 8 | Page 110
\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]
Exercise 20.6 | Q 9 | Page 110
\[\int\limits_1^2 x^2 dx\]
Exercise 20.6 | Q 10 | Page 110
\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]
Exercise 20.6 | Q 11 | Page 110
\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]
Exercise 20.6 | Q 12 | Page 110
\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]
Exercise 20.6 | Q 13 | Page 111
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
Exercise 20.6 | Q 14 | Page 111
\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]
Exercise 20.6 | Q 15 | Page 111
\[\int\limits_0^2 e^x dx\]
Exercise 20.6 | Q 16 | Page 111
\[\int\limits_a^b e^x dx\]
Exercise 20.6 | Q 17 | Page 111
\[\int\limits_a^b \cos\ x\ dx\]
Exercise 20.6 | Q 18 | Page 111
\[\int\limits_0^{\pi/2} \sin x\ dx\]
Exercise 20.6 | Q 19 | Page 111
\[\int\limits_0^{\pi/2} \cos x\ dx\]
Exercise 20.6 | Q 20 | Page 111
\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]
Exercise 20.6 | Q 21 | Page 111
\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]
Exercise 20.6 | Q 22 | Page 111
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Exercise 20.6 | Q 23 | Page 111
\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]
Exercise 20.6 | Q 23 | Page 111
\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]
Exercise 20.6 | Q 24 | Page 111
\[\int\limits_0^2 \left( x^2 + x \right) dx\]
Exercise 20.6 | Q 25 | Page 111
\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]
Exercise 20.6 | Q 26 | Page 111
\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]
Exercise 20.6 | Q 27 | Page 111
\[\int\limits_a^b x\ dx\]
Exercise 20.6 | Q 28 | Page 111
\[\int\limits_0^5 \left( x + 1 \right) dx\]
Exercise 20.6 | Q 29 | Page 111
\[\int\limits_2^3 x^2 dx\]
Exercise 20.6 | Q 30 | Page 111
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
Exercise 20.6 | Q 31 | Page 111
\[\int\limits_0^2 \left( x^2 - x \right) dx\]
Exercise 20.6 | Q 32 | Page 111
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Exercise 20.6 | Q 33 | Page 111

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]
Advertisement
Very Short Answers [Pages 111 - 116]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals Very Short Answers [Pages 111 - 116]

Very Short Answers | Q 1 | Page 115
\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]
Very Short Answers | Q 2 | Page 115
\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]
Very Short Answers | Q 3 | Page 115
\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]
Very Short Answers | Q 4 | Page 115
\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]
Very Short Answers | Q 5 | Page 111
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]
Very Short Answers | Q 6 | Page 115
\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 

Very Short Answers | Q 7 | Page 115
\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]
Very Short Answers | Q 8 | Page 115
\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]
Very Short Answers | Q 9 | Page 115
\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]
Very Short Answers | Q 10 | Page 115
\[\int\limits_0^\infty e^{- x} dx .\]
Very Short Answers | Q 11 | Page 115
\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]
Very Short Answers | Q 12 | Page 115
\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]
Very Short Answers | Q 13 | Page 115
\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]
Very Short Answers | Q 14 | Page 115
\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]
Very Short Answers | Q 15 | Page 115
\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 

Very Short Answers | Q 16 | Page 115
\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]
Very Short Answers | Q 17 | Page 115
\[\int\limits_0^\pi \cos^5 x\ dx .\]
Very Short Answers | Q 18 | Page 115
\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]
Very Short Answers | Q 19 | Page 115
\[\int\limits_{- 1}^1 x\left| x \right| dx .\]
Very Short Answers | Q 20 | Page 115
\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]
Very Short Answers | Q 21 | Page 115
\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]
Very Short Answers | Q 22 | Page 115

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 

Very Short Answers | Q 23 | Page 115
\[\int\limits_2^3 \frac{1}{x}dx\]
Very Short Answers | Q 24 | Page 115
\[\int\limits_0^2 \sqrt{4 - x^2} dx\]
Very Short Answers | Q 25 | Page 115
\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]
Very Short Answers | Q 26 | Page 115

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 

Very Short Answers | Q 27 | Page 115

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]
Very Short Answers | Q 28 | Page 115

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]
Very Short Answers | Q 29 | Page 115

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 

Very Short Answers | Q 30 | Page 115

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]
Very Short Answers | Q 31 | Page 116

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 

Very Short Answers | Q 32 | Page 116

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 

Very Short Answers | Q 33 | Page 116

If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]

Very Short Answers | Q 34 | Page 116

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.

Very Short Answers | Q 35 | Page 116

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.
Very Short Answers | Q 36 | Page 116

Evaluate : 

\[\int\limits_2^3 3^x dx .\]
Very Short Answers | Q 37 | Page 116
\[\int\limits_0^2 \left[ x \right] dx .\]
Very Short Answers | Q 38 | Page 116
\[\int\limits_0^{15} \left[ x \right] dx .\]
Very Short Answers | Q 39 | Page 116

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 
Very Short Answers | Q 40 | Page 116
\[\int\limits_0^1 e^\left\{ x \right\} dx .\]
Very Short Answers | Q 41 | Page 116
\[\int\limits_0^2 x\left[ x \right] dx .\]
Very Short Answers | Q 42 | Page 116
\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]
Very Short Answers | Q 43 | Page 116
\[\int\limits_1^2 \log_e \left[ x \right] dx .\]
Very Short Answers | Q 44 | Page 116
\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]
Very Short Answers | Q 45 | Page 116

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 

Advertisement
MCQ [Pages 117 - 120]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals MCQ [Pages 117 - 120]

MCQ | Q 1 | Page 117
\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals
  • π/2

  • π/4

  • π/6

  • π/8

MCQ | Q 2 | Page 117

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals

  • 0

  • 1/2

  • 2

  • 3/2

MCQ | Q 3 | Page 117

The value of \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is __________ .

  • \[\frac{\pi^2}{4}\]
  • \[\frac{\pi^2}{2}\]
  • \[\frac{3 \pi^2}{2}\]
  • \[\frac{\pi^2}{3}\]

MCQ | Q 4 | Page 117

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 

  • 0

  • 2

  • 8

  • 4

MCQ | Q 5 | Page 117

The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 

  • 0

  • π/2

  • π/4

  • none of these

MCQ | Q 6 | Page 117

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals

  •  log 2 − 1

  •  log 2

  • log 4 − 1

  •  − log 2

MCQ | Q 7 | Page 117

\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals

  • 2

  • 1

  • π/4

  • π2/8

MCQ | Q 8 | Page 117
\[\int\limits_0^{\pi/2} \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals
  • \[\log\left( \frac{2}{3} \right)\]
  • \[\log\left( \frac{3}{2} \right)\]
  • \[\log\left( \frac{3}{4} \right)\]
  • \[\log\left( \frac{4}{3} \right)\]
MCQ | Q 9 | Page 117

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals

  • \[\frac{1}{3} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
  • \[\frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
  • \[\sqrt{3} \tan^{- 1} \left( \sqrt{3} \right)\]

     

  • \[2\sqrt{3} \tan^{- 1} \sqrt{3}\]
MCQ | Q 10 | Page 117

`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{2} - 1\]

  • \[\frac{\pi}{2} + 1\]
  •  π + 1

  • None of these

MCQ | Q 11 | Page 117
\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]
  • \[\frac{\pi}{\sqrt{a^2 - b^2}}\]

  • \[\frac{\pi}{ab}\]
  • \[\frac{\pi}{a^2 + b^2}\]

  • (a + b) π

MCQ | Q 12 | Page 118
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is
  •  π/3

  •  π/6

  • π/12

  • π/2

MCQ | Q 13 | Page 118

Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]

  • \[\frac{\pi}{60}\]
  • \[\frac{\pi}{20}\]
  • \[\frac{\pi}{40}\]
  • \[\frac{\pi}{80}\]
MCQ | Q 14 | Page 118
\[\int\limits_1^e \log x\ dx =\]
  • 1

  •  e − 1

  • e + 1

  •  0

MCQ | Q 15 | Page 118
\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to
  • \[\frac{\pi}{12}\]
  • \[\frac{\pi}{6}\]
  • \[\frac{\pi}{4}\]
  • \[\frac{\pi}{3}\]
MCQ | Q 16 | Page 118
\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]
  • \[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{2} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{6} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{3} + \log\left( 2\sqrt{2} \right)\]

MCQ | Q 17 | Page 118

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{4}\]
  • \[\frac{\pi}{6}\]
  • \[\frac{\pi}{3}\]
MCQ | Q 18 | Page 118
\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to
  •  1

  • 2

  • − 1

  • − 2

MCQ | Q 19 | Page 118
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to
  • \[\frac{ \pi}{4}\]
  • \[\frac{\pi}{3}\]
  • \[\frac{\pi}{2}\]
  •  π

MCQ | Q 20 | Page 118

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 

  •  1

  • e − 1

  • 0

  • − 1 

MCQ | Q 21 | Page 118

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 

  • \[\frac{\pi}{2}\]
  • \[\frac{1}{2}\]
  • \[\frac{\pi}{4}\]
  • 1

MCQ | Q 22 | Page 118

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals

  • 4a2

  • 0

  •  2a2

  • none of these

MCQ | Q 23 | Page 119

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 

  • \[\frac{\pi^4}{2}\]
  • \[\frac{\pi^4}{4}\]
  •  0

  • none of these

MCQ | Q 24 | Page 119
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to
  •  loge 3

  • \[\log_e \sqrt{3}\]
  • \[\frac{1}{2}\log\left( - 1 \right)\]
  •  log (−1)

     
MCQ | Q 25 | Page 119
\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to
  • −2

  • 2

  • 0

  • 4

MCQ | Q 26 | Page 119

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 

  • \[\frac{1}{3 \ln x}\]
  • \[\frac{1}{3 \ln x} - \frac{1}{2 \ln x}\]
  • (ln x)−1 x (x − 1)

  • \[\frac{3 x^2}{\ln x}\]
MCQ | Q 27 | Page 119

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 

  • \[9 \left( \frac{\pi}{2} \right)^9\]
  • \[10 \left( \frac{\pi}{2} \right)^9\]
  • \[\left( \frac{\pi}{2} \right)^9\]
  • \[9 \left( \frac{\pi}{2} \right)^8\]
MCQ | Q 28 | Page 119
\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^\frac{5}{4}} dx =\]
  • `15/16`

  • `3/16`

  • `-3/16`

  • `-16/3`

MCQ | Q 29 | Page 119
\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to
  • \[\ln\left( \frac{1}{3} \right)\]
  • \[\ln\left( \frac{2}{3} \right)\]
  • \[\ln\left( \frac{3}{2} \right)\]
  • \[\ln\left( \frac{4}{3} \right)\]
MCQ | Q 30 | Page 118

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is ________ .

  •  4

  •  2

  • −2

  • 0

MCQ | Q 31 | Page 119
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to
  • 0

  • 1

  • π/2

  • π/4

MCQ | Q 32 | Page 119
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to
MCQ | Q 33 | Page 120
\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to
  •  0

  •  π

  • π/2

  • π/4

MCQ | Q 34 | Page 120
\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to
  •  π/4

  •  π/2

  • π

  • 1

MCQ | Q 35 | Page 120
\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 
  • π

  •  π/2

  •  0

MCQ | Q 36 | Page 120

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 

  • π/4

  • π/8

  • π/2

  • 0

MCQ | Q 37 | Page 120
\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 
  • π ln 2

  • −π ln 2

  • 0

  • \[- \frac{\pi}{2}\ln 2\]

MCQ | Q 38 | Page 120

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to

  • \[2 \int\limits_0^a f\left( x \right) dx\]
  •  0

  • \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]

  • \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^{2a} f\left( 2a - x \right) dx\]
MCQ | Q 39 | Page 120

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to

  • \[\frac{a + b}{2} \int\limits_a^b f\left( b - x \right) dx\]

     

  • \[\frac{a + b}{2} \int\limits_a^b f\left( b + x \right) dx\]

     

  • \[\frac{b - a}{2} \int\limits_a^b f\left( x \right) dx\]
  • \[\frac{b + a}{2} \int\limits_a^b f\left( x \right) dx\]
MCQ | Q 40 | Page 120

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is

  • 1

  • 0

  • −1

  • π/4

MCQ | Q 41 | Page 120

The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 

  • 2

  • \[\frac{3}{4}\]
  • 0

  • −2

MCQ | Q 42 | Page 120

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 

  •  0

  • 2

  • π

  • 1

Advertisement
Revision Exercise [Pages 12 - 123]

RD Sharma solutions for Class 12 Maths Chapter 20 Definite Integrals Revision Exercise [Pages 12 - 123]

Revision Exercise | Q 1 | Page 121

\[\int\limits_0^4 x\sqrt{4 - x} dx\]

Revision Exercise | Q 2 | Page 121

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]

Revision Exercise | Q 3 | Page 121

\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]

Revision Exercise | Q 4 | Page 121

\[\int\limits_0^1 \cos^{- 1} x dx\]

Revision Exercise | Q 5 | Page 121

\[\int\limits_0^1 \tan^{- 1} x dx\]

Revision Exercise | Q 6 | Page 121

\[\int\limits_0^1 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) dx\]

Revision Exercise | Q 7 | Page 121

\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]

Revision Exercise | Q 8 | Page 121

\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

Revision Exercise | Q 9 | Page 121

\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]

Revision Exercise | Q 10 | Page 121

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

Revision Exercise | Q 11 | Page 121

\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\left( 1 + \cos x \right)^2} dx\]

Revision Exercise | Q 12 | Page 121

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sqrt{1 + \cos x}} dx\]

Revision Exercise | Q 13 | Page 121

\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]

Revision Exercise | Q 14 | Page 121

\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]

Revision Exercise | Q 15 | Page 121

\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

Revision Exercise | Q 16 | Page 121

\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]

Revision Exercise | Q 17 | Page 121

\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]

Revision Exercise | Q 18 | Page 121

\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]

Revision Exercise | Q 19 | Page 121

\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]

Revision Exercise | Q 20 | Page 121

\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{5/2}} dx\]

Revision Exercise | Q 21 | Page 121

\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]

Revision Exercise | Q 22 | Page 121

\[\int\limits_0^1 \log\left( 1 + x \right) dx\]

Revision Exercise | Q 23 | Page 121

Evaluate the following integrals :-

\[\int_2^4 \frac{x^2 + x}{\sqrt{2x + 1}}dx\]

Revision Exercise | Q 24 | Page 121

\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]

Revision Exercise | Q 25 | Page 121

\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]

Revision Exercise | Q 26 | Page 121

\[\int\limits_1^2 \frac{x + 3}{x\left( x + 2 \right)} dx\]

Revision Exercise | Q 27 | Page 122

\[\int\limits_0^{\pi/4} e^x \sin x dx\]

Revision Exercise | Q 28 | Page 122

\[\int\limits_0^{\pi/4} \tan^4 x dx\]

Revision Exercise | Q 29 | Page 122

\[\int\limits_0^1 \left| 2x - 1 \right| dx\]

Revision Exercise | Q 30 | Page 122

\[\int\limits_1^3 \left| x^2 - 2x \right| dx\]

Revision Exercise | Q 31 | Page 122

\[\int\limits_0^{\pi/2} \left| \sin x - \cos x \right| dx\]

Revision Exercise | Q 32 | Page 122

\[\int\limits_0^1 \left| \sin 2\pi x \right| dx\]

Revision Exercise | Q 33 | Page 122

\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]

Revision Exercise | Q 34 | Page 122

\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]

Revision Exercise | Q 35 | Page 122

\[\int\limits_{- 1/2}^{1/2} \cos x \log\left( \frac{1 + x}{1 - x} \right) dx\]

Revision Exercise | Q 36 | Page 122

\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]

Revision Exercise | Q 37 | Page 122

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]

Revision Exercise | Q 38 | Page 122

\[\int\limits_0^{2\pi} \cos^7 x dx\]

Revision Exercise | Q 39 | Page 122

\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]

Revision Exercise | Q 40 | Page 122

\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]

Revision Exercise | Q 41 | Page 122

\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]

Revision Exercise | Q 42 | Page 122

\[\int\limits_0^\pi x \sin x \cos^4 x dx\]

Revision Exercise | Q 43 | Page 122

\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]

Revision Exercise | Q 44 | Page 122

\[\int\limits_{- \pi/4}^{\pi/4} \left| \tan x \right| dx\]

Revision Exercise | Q 45 | Page 122

\[\int\limits_0^{15} \left[ x^2 \right] dx\]

Revision Exercise | Q 46 | Page 122

\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx\]

Revision Exercise | Q 47 | Page 12

\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]

Revision Exercise | Q 48 | Page 122

\[\int\limits_0^{\pi/2} \frac{\cos^2 x}{\sin x + \cos x} dx\]

Revision Exercise | Q 49 | Page 122

\[\int\limits_0^\pi \cos 2x \log \sin x dx\]

Revision Exercise | Q 50 | Page 122

\[\int\limits_0^\pi \frac{x}{a^2 - \cos^2 x} dx, a > 1\]

Revision Exercise | Q 51 | Page 122

\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x} dx\]

Revision Exercise | Q 52 | Page 122

\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]

Revision Exercise | Q 53 | Page 122

\[\int\limits_0^{\pi/2} \frac{\sin^2 x}{\sin x + \cos x} dx\]

Revision Exercise | Q 54 | Page 122

\[\int\limits_0^{\pi/2} \frac{x}{\sin^2 x + \cos^2 x} dx\]

Revision Exercise | Q 55 | Page 122

\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]

Revision Exercise | Q 56 | Page 122

\[\int\limits_0^1 \cot^{- 1} \left( 1 - x + x^2 \right) dx\]

Revision Exercise | Q 57 | Page 122

\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]

Revision Exercise | Q 58 | Page 122

\[\int\limits_0^{\pi/2} \frac{1}{2 \cos x + 4 \sin x} dx\]

Revision Exercise | Q 59 | Page 123

\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]

Revision Exercise | Q 60 | Page 123

\[\int\limits_0^{\pi/2} \frac{dx}{4 \cos x + 2 \sin x}dx\]

Revision Exercise | Q 61 | Page 123

\[\int\limits_0^4 x dx\]

Revision Exercise | Q 62 | Page 123

\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]

Revision Exercise | Q 63 | Page 123

\[\int\limits_1^4 \left( x^2 + x \right) dx\]

Revision Exercise | Q 64 | Page 123

\[\int\limits_{- 1}^1 e^{2x} dx\]

Revision Exercise | Q 65 | Page 123

\[\int\limits_2^3 e^{- x} dx\]

Revision Exercise | Q 66 | Page 123

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

Revision Exercise | Q 67 | Page 123

\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]

Revision Exercise | Q 68 | Page 123

\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]

Revision Exercise | Q 69 | Page 123

\[\int\limits_0^3 \left( x^2 + 1 \right) dx\]

Advertisement

Chapter 20: Definite Integrals

Exercise 20.1Exercise 20.2Exercise 20.3Exercise 20.4Exercise 20.5Exercise 20.6Very Short AnswersMCQRevision Exercise
Class 12 Maths - Shaalaa.com

RD Sharma solutions for Class 12 Maths chapter 20 - Definite Integrals

RD Sharma solutions for Class 12 Maths chapter 20 (Definite Integrals) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Class 12 Maths solutions in a manner that help students grasp basic concepts better and faster.

Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Class 12 Maths chapter 20 Definite Integrals are Definite Integrals Problems, Indefinite Integral Problems, Comparison Between Differentiation and Integration, Geometrical Interpretation of Indefinite Integral, Integrals of Some Particular Functions, Indefinite Integral by Inspection, Properties of Indefinite Integral, Integration Using Trigonometric Identities, Introduction of Integrals, Evaluation of Definite Integrals by Substitution, Properties of Definite Integrals, Fundamental Theorem of Calculus, Definite Integral as the Limit of a Sum, Evaluation of Simple Integrals of the Following Types and Problems, Methods of Integration - Integration by Parts, Methods of Integration - Integration Using Partial Fractions, Methods of Integration - Integration by Substitution, Integration as an Inverse Process of Differentiation.

Using RD Sharma Class 12 solutions Definite Integrals exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in RD Sharma Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 12 prefer RD Sharma Textbook Solutions to score more in exam.

Get the free view of chapter 20 Definite Integrals Class 12 extra questions for Class 12 Maths and can use Shaalaa.com to keep it handy for your exam preparation

Advertisement
Share
Notifications

View all notifications
Login
Create free account


      Forgot password?
View in app×