Maharashtra State BoardSSC (English Medium) 8th Standard

Expansion of (a - b)3

Advertisement Remove all ads

Topics

Formula

  • (a - b)3 = a3 - 3a2b + 3ab2 - b3.

Notes

Expansion of (a - b)3:

∴ (a - b)3 = (a - b)(a - b)(a - b) = (a - b)(a - b)2

= (a - b)(a2 - 2ab + b2)

= a(a2 - 2ab + b2) - b(a2 - 2ab + b2)

= a3 - 2a2b + ab2 - a2b + 2ab2 - b3

= a3 - 3a2b + 3ab2 - b3

∴ (a - b)3 = a3 - 3a2b + 3ab2 - b3.

Example

Expand (x - 2)3.

(a - b)3 = a3 - 3a2b + 3ab2 - b3

Here taking, a = x and b = 2,

`(x - 2)^3 = x^3 - 3 xx x^2 xx 2 + 3 xx x xx (2)^2 - (2)^3`

`(x - 2)^3 = x^3 - 6x^2 + 12x - 8`

Example

Expand (4p - 5q)3

(4p - 5q)3 = (4p)3 - 3(4p)2(5q) + 3(4p)(5q)2 - (5q)3.

(4p - 5q)3 = 64p3 - 240p2q + 300pq2 - 125q3.

Example

Find the cube of 99 using the expansion formula.

(99)3
= (100 - 1)3

= (100)3 - 3 × (100)2 × 1 + 3 × 100 × (1)2 - 13

= 1000000 - 30000 + 300 - 1

= 9,70,299

Example

Simplify.

(2x + 3y)3 - (2x - 3y)3

(2x + 3y)3 - (2x - 3y)3

= [(2x)3 + 3(2x)2(3y) + 3(2x)(3y)2 + (3y)3 ] - [(2x)3 - 3(2x)2(3y) + 3(2x)(3y)2 - (3y)3]

= (8x3 + 36x2y + 54xy2 + 27y3) - (8x3 - 36x2y + 54xy2 - 27y3)

= 8x3 +36x2y + 54xy2 + 27y3 - 8x3 + 36x2y - 54xy2 + 27y3

= 72x2y + 54y3

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×