Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
MCQ
Fill in the Blanks
If `((1 + i)/(1 - i))^x` = 1, then ______.
Options
x = 2n + 1
x = 4n
x = 2n
x = 4n + 1, where n ∈ N
Advertisement Remove all ads
Solution
If `((1 + i)/(1 - i))^x` = 1, then x = 4n.
Explanation:
Given that: `((1 + i)/(1 - i))^x` = 1
⇒ `(((1 + i)(1 + i))/((1 - i)(1 - i)))^x` = 1
⇒ `((1 + i^2 + 2i)/(1 - i^2))^x` = 1
⇒ `((1 - 1 + 2i)/(1 + 1))^x` = 1
⇒ `((2i)/2)^x` = 1
⇒ (i)x = (i)4n
⇒ x = 4n, n ∈ N
Concept: Algebraic Operations of Complex Numbers
Is there an error in this question or solution?