Advertisements
Advertisements
Question
Differentiate the following function with respect to x: `(log x)^x+x^(logx)`
Solution
`Let y=(logx)^x+x^(logx).............(1)`
`Now `
`y=y_1+y_2 ..........................(2)`
Differentiating (2) with respect x, we get
`dy/dx=dy_1/dx+dy_2/dx.........(3)`
Now take log of y1 = (log x)x
`log y_1 = x log (log x)`
Differentiating with respect to x, we get
`1/y_2 dy_2/dx=(2logx) xx 1/x`
`dy_2/dx=y_2((2logx)/x)=x^(logx)((2logx)/x)................(5)`
Adding equation (4) and (5), we get:
`dy/dx=(logx)^x(1/logx+log(logx))+x^(logx)((2logx)/x)`
APPEARS IN
RELATED QUESTIONS
Differentiate the function with respect to x.
cos x . cos 2x . cos 3x
Differentiate the function with respect to x.
(log x)x + xlog x
Differentiate the function with respect to x.
xsin x + (sin x)cos x
Differentiate the function with respect to x.
`(x cos x)^x + (x sin x)^(1/x)`
Find `dy/dx` for the function given in the question:
(cos x)y = (cos y)x
Find the derivative of the function given by f (x) = (1 + x) (1 + x2) (1 + x4) (1 + x8) and hence find f ′(1).
Differentiate (x2 – 5x + 8) (x3 + 7x + 9) in three ways mentioned below:
- by using product rule
- by expanding the product to obtain a single polynomial.
- by logarithmic differentiation.
Do they all give the same answer?
Differentiate : log (1 + x2) w.r.t. cot-1 x.
Solve the following differential equation: (3xy + y2) dx + (x2 + xy) dy = 0
If y = (log x)x + xlog x, find `"dy"/"dx".`
If `log_10((x^3 - y^3)/(x^3 + y^3)) = 2, "show that" "dy"/"dx" = -(99x^2)/(101y^2)`
If `log_5((x^4 + y^4)/(x^4 - y^4)) = 2, "show that""dy"/"dx" = (12x^3)/(13y^3)`.
`"If" y = sqrt(logx + sqrt(log x + sqrt(log x + ... ∞))), "then show that" dy/dx = (1)/(x(2y - 1).`
If x = a cos3t, y = a sin3t, show that `"dy"/"dx" = -(y/x)^(1/3)`.
If x = 2cos4(t + 3), y = 3sin4(t + 3), show that `"dy"/"dx" = -sqrt((3y)/(2x)`.
If x = sin–1(et), y = `sqrt(1 - e^(2t)), "show that" sin x + dy/dx` = 0
If y = `log(x + sqrt(x^2 + a^2))^m`, show that `(x^2 + a^2)(d^2y)/(dx^2) + x "d"/"dx"` = 0.
Choose the correct option from the given alternatives :
If xy = yx, then `"dy"/"dx"` = ..........
If y = `25^(log_5sin_x) + 16^(log_4cos_x)` then `("d"y)/("d"x)` = ______.
If y = log [cos(x5)] then find `("d"y)/("d"x)`
If log5 `((x^4 + "y"^4)/(x^4 - "y"^4))` = 2, show that `("dy")/("d"x) = (12x^3)/(13"y"^2)`
If y = `(sin x)^sin x` , then `"dy"/"dx"` = ?
`d/dx(x^{sinx})` = ______
If `("f"(x))/(log (sec x)) "dx"` = log(log sec x) + c, then f(x) = ______.
`log [log(logx^5)]`
If y = `log ((1 - x^2)/(1 + x^2))`, then `"dy"/"dx"` is equal to ______.
If y `= "e"^(3"x" + 7), "then the value" |("dy")/("dx")|_("x" = 0)` is ____________.
Find the derivative of `y = log x + 1/x` with respect to x.