Advertisement Remove all ads

Formula for Solving a Quadratic Equation

Advertisement Remove all ads

Topics

notes

ax2 + bx + c, Divide the polynomial by a ( ∵a ≠ 0) to get `x^2+b/ax+c/a`.

Let us write the polynomial `x^2+b/ax+c/a`  in the form of difference of two square numbers. Now we can obtain roots or solutions of equation `x^2+b/ax+c/a` which is equivalent to `ax^2 + bx + c = 0 .`

`ax^2 + bx + c = 0`               .............(I)

`x^2+b/ax+c/a=0`               ..... dividing both sides by a

`therefore x^2+b/ax+(b/(2a))^2-(b/(2a))^2+c/a=0`

`therefore (x+b/(2a))^2-b^2/(4a^2)+c/a=0`

`therefore(x+b/(2a))^2-(b^2-4ac)/(4a^2)=0`       `therefore(x+b/(2a))^2=(b^2-4ac)/(4a^2)`

`therefore(x+b/(2a))=sqrt((b^2-4ac)/(4a^2)) or (x+b/(2a))=-sqrt((b^2-4ac)/(4a^2))`

`therefore x=-b/(2a)+sqrt((b^2-4ac)/(4a^2)) or x=-b/(2a)-sqrt((b^2-4ac)/(4a^2))`

`therefore x=(-b+sqrt(b^2-4ac))/(2a) or x=(-b-sqrt(b^2-4ac))/(2a)`

In short the solution is written as `x=(-b+-sqrt(b^2-4ac))/(2a)` and these values are denoted by `alpha,beta`.

`therefore alpha=(-b+sqrt(b^2-4ac))/(2a) , beta=(-b-sqrt(b^2-4ac))/(2a)` ............................(I)

The values of a, b, c from equation ax2 + bx + c = 0 are substituted in  `(-b+-sqrt(b^2-4ac))/(2a)` and further simplified to obtain the roots of the equation. So `x=(-b+-sqrt(b^2-4ac))/(2a)`  is the formula used to solve quadratic equation. Out of the two roots any one can be represented by α and the other by β.

That is, instead (I) we can write `alpha=(-b+sqrt(b^2-4ac))/(2a) , beta=(-b-sqrt(b^2-4ac))/(2a)` .......(II)

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×