English

Write the value of tan(2tan^(-1)(1/5)) - Mathematics

Advertisements
Advertisements

Question

Write the value of `tan(2tan^(-1)(1/5))`

Solution

`2tan^(-1)x=tan^(-1)(2x)/(1-x^2)`

`therefore 2 tan^(-1)(1/5)=tan^(-1)((2(1/5))/(1-(1/5)^2))=tan^(-1)(5/12)`

Thus `tan (2tan^(-1)(1/5))=tan(tan^(-1)(5/12))=5/12`

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) Delhi Set 1

RELATED QUESTIONS

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`tan^-1  2/3=1/2tan^-1  12/5`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×