Advertisements
Advertisements
Question
Write the value of `tan(2tan^(-1)(1/5))`
Solution
`2tan^(-1)x=tan^(-1)(2x)/(1-x^2)`
`therefore 2 tan^(-1)(1/5)=tan^(-1)((2(1/5))/(1-(1/5)^2))=tan^(-1)(5/12)`
Thus `tan (2tan^(-1)(1/5))=tan(tan^(-1)(5/12))=5/12`
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result-
`tan^-1 63/16 = sin^-1 5/13 + cos^-1 3/5`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`tan^-1x+2cot^-1x=(2x)/3`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]