Advertisements
Advertisements
Question
Integrate : sec3 x w. r. t. x.
Solution
`I = intsec^3x dx`
`I =int secx.sec^2x dx`
`I =secx.intsec^2xdx-int[d/dx(secx).int sec^2x dx] dx`
`I =secx.tanx-int secx.tanx.tanx dx`
`I =secx.tanx-int secx(sec^2x -1)dx`
`I =secx.tanx-int [sec^3x-secx]dx`
`I =secx.tanx-int sec^3x + int secxdx`
`I =secx.tanx - I + log|secx + tanx| + c`
`2I =secx.tanx + log|secx + tanx| + c`
`therefore I =1/2(secx.tanx + log|secx + tanx|) + c`
APPEARS IN
RELATED QUESTIONS
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x sin x.
Integrate the function in x sin 3x.
Integrate the function in x log x.
Integrate the function in x2 log x.
Integrate the function in x sin-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t.x : e2x sin x cos x
Integrate the following w.r.t.x : sec4x cosec2x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/("9x"^2 - 25)`
`int (sinx)/(1 + sin x) "d"x`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int 1/x "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
∫ log x · (log x + 2) dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int(logx)^2dx` equals ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
`intsqrt(1+x) dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`inte^(xloga).e^x dx` is ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3 e^(x^2) dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`