Advertisement Remove all ads

If `Cosec Theta - Sin Theta = A^3`, `Sec Theta - Cos Theta = B^3` Prove that `A^2 B^2 (A^2 + B^2) = 1` - Mathematics

if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`

Advertisement Remove all ads

Solution

Given that,

`cosec theta - sin theta = a^3` .....(1)

`sec theta - cos theta = b^3`    ......(2)

We have to prove `a^2b^2(a^2 + b^2) = 1`

We know that `sin^2 theta + cos^2 theta = 1`

Now from the first equation, we have

`cosec theta - sin theta = a^3`

`=> 1/sin theta - sin theta = a^3`

`=> (1 - sin^2 theta)/sin theta = a^3`

`=> cos^2 theta/sin theta = a^3`

`=> a = (cos^(2/3) theta)/(sin^(1/3) theta)`

Again from the second equation, we have

`sec theta - cos theta =- b^3`

`=> 1/cos theta - cos theta = b^3`

`=> (1 - cos^2 theta)/cos theta = b^3`

`=> sin^2 theta/cos theta = b^3`

`=> b = (sin^(2/3) theta)/(cos^(1/3) theta)`

Therefore, we have

`a^2b^2 (a^2 + b^2) = (cos^(4/3) theta)/(sin^(2/3) theta cos^(2/3) theta) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`

`= sin^(2/3) theta cos^(2/3) ((cos^(4/3) theta)/(sin^(2/3) theta) + (sin^(4/3) theta)/(cos^(2/3) theta))`

`= cos^(2/3) theta cos^(4/3) theta + sin^(2/3) theta sin^(4/3) theta`

`= cos^2 theta + sin^2 theta`

= 1

Hence proved.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 10 Maths
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 76 | Page 46
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×