English

Find the vector equation of the plane passing through three points with position vectors  i+j-2k , 2i-j+k and i+2j+k . Also find the coordinates of the point of intersection of this plane and the line r=3i-j-k λ+(2i-2j+k) - Mathematics

Advertisements
Advertisements

Question

Find the vector equation of the plane passing through three points with position vectors ` hati+hatj-2hatk , 2hati-hatj+hatk and hati+2hatj+hatk` . Also find the coordinates of the point of intersection of this plane and the line `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`

 

Solution

Let the position vectors of the three points be `veca= hati+hatj-2hatk , vecb=2hati-hatj+hatk and vecc=hati+2hatj+hatk`

So, the equation of the plane passing through the points `vec a,vecb and vecc` is

`(vecr-veca).[(vecb-vecc)xx(vecc-veca)]=0`

`[vecr-(hati+hatj-2hatk)][(hati-3hatj)xx(hatj+3hatk)]=0`

`[vecr-(hati+hatj-2hatk)](hatk-3hatj-9hati)=0`

`vecr(-9hati-3hatj+hatk)-(-9-3-2)=0`

`vecr(-9hati-3hatj+hatk)+14=0`

`vecr(9hati+3hatj-hatk)=14  ............(1)`

So, the vector equation of the plane is `vecr(9hati+3hatj-hatk)=14`

The equation of the given line is `vecr=3hati-hatj-hatk lambda +(2hati-2hatj+hatk)`

Position vector of any point on the give line is

`vecr=(3+2lambda)hati+(-1-2lambda)hatj+(-1+lambda)hatk ...................(2)`

the point(2) lies on plane (1) if ,

`[(3+2lambda)hati+(-1-2lambda)hatj+(-1+lambda)hatk](9hati+3hatj-hatk)=14`

`9(3+2lambda)+3(-1-2lambda)-(-1+lambda)=14`

`11 lambda+25=14`

`lambda=-1`

Putting `lambda=-1` in (2) we have

`vecr=(3-2)hati+(-1+2)hatj+(-1-1)hatk`

`=hati+hatj-2hatk`

Thus, the point of intersection of the given line and the plane (1) is `hati+hatj-2hatk`

 

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) Delhi Set 1

RELATED QUESTIONS

Find the vector equation of the plane passing through a point having position vector `3 hat i- 2 hat j + hat k` and perpendicular to the vector `4 hat i + 3 hat j + 2 hat k`

 

Find the vector equation of the plane which is at a distance of 5 units from the origin and which is normal to the vector  `2hati + hatj + 2hatk.`


Parametric form of the equation of the plane is `bar r=(2hati+hatk)+lambdahati+mu(hat i+2hatj+hatk)` λ and μ are parameters. Find normal to the plane and hence equation of the plane in normal form. Write its Cartesian form.


Write the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane `vec r.(hati+hatj+hatk)=2`


Find the equation of the plane which contains the line of intersection of the planes

`vecr.(hati-2hatj+3hatk)-4=0" and"`

`vecr.(-2hati+hatj+hatk)+5=0`

and whose intercept on x-axis is equal to that of on y-axis.


Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is `2hati-3hatj+6hatk`


The x-coordinate of a point of the line joining the points P(2,2,1) and Q(5,1,-2) is 4. Find its z-coordinate


Find the vector equation of a line passing through the points A(3, 4, –7) and B(6, –1, 1).


Find the Cartesian equation of the following planes:

`vecr.(hati + hatj-hatk) = 2`


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

2x + 3y + 4z – 12 = 0


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

3y + 4z – 6 = 0


In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

5y + 8 = 0


Find the vector and Cartesian equation of the planes that passes through the point (1, 4, 6) and the normal vector to the plane is `hati -2hatj +  hatk`


The Cartesian equation of the line is 2x - 3 = 3y + 1 = 5 - 6z. Find the vector equation of a line passing through (7, –5, 0) and parallel to the given line.


Find the vector and Cartesian equations of the line passing through (1, 2, 3) and parallel to the planes \[\vec{r} \cdot \left( \hat{i}  - \hat{j} + 2 \hat{k}  \right) = 5 \text{ and } \vec{r} \cdot \left( 3 \hat{i} + \hat{j}  + 2 \hat{k} \right) = 6\]

 

Find the equation of the plane passing through the intersection of the planes `vec(r) .(hat(i) + hat(j) + hat(k)) = 1"and" vec(r) . (2 hat(i) + 3hat(j) - hat(k)) +4 = 0 `and parallel to x-axis. Hence, find the distance of the plane from x-axis.


Find the vector and cartesian equation of the plane passing through the point (2, 5, - 3), (-2, -3, 5) and (5, 3, -3). Also, find the point of intersection of this plane with the line passing through points (3, 1, 5) and (-1, -3, -1).


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is ______.


The vector equation of the line `(x - 5)/3 = (y + 4)/7 = (z - 6)/2` is `vec"r" = 5hat"i" - 4hat"j" + 6hat"k" + lambda(3hat"i" + 7hat"j" + 2hat"k")`.


Find the vector and the cartesian equations of the plane containing the point `hati + 2hatj - hatk` and parallel to the lines `vecr = (hati + 2hatj + 2hatk) + s(2hati - 3hatj + 2hatk)` and `vecr = (3hati + hatj - 2hatk) + t(hati - 3hatj + hatk)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×