Advertisements
Advertisements
Question
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Solution
To prove `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4` we will use the following formula
`tan^(-1)+tan^(-1)y=tan^(-1)((x+y)/(1-xy)),xy<1`
`Let S=tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)`
`S=[tan^(-1)(1/2)+tan^(-1)(1/5)]+tan^(-1)(1/8)`
`S=tan^(-1)((1/2+1/5)/(1-1/2 xx 1/5))+tan^(-1)(1/8)`
`S=tan^(-1)(7/9)+tan^(-1)(1/8)`
`=tan^(-1)((7/9+1/8)/(1-(7/9)xx(1/8)))`
`=tan^(-1)((56+9)/(72-7))`
`S=tan^(-1)(65/65)=tan^(-1)1=pi/4`
Hence, `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
APPEARS IN
RELATED QUESTIONS
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Find: ∫ sin x · log cos x dx
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.