English

Prove that: tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4 - Mathematics

Advertisements
Advertisements

Question

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`

Solution

To prove `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4` we will use the following formula 

`tan^(-1)+tan^(-1)y=tan^(-1)((x+y)/(1-xy)),xy<1`

`Let S=tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)`

`S=[tan^(-1)(1/2)+tan^(-1)(1/5)]+tan^(-1)(1/8)`

`S=tan^(-1)((1/2+1/5)/(1-1/2 xx 1/5))+tan^(-1)(1/8)`

`S=tan^(-1)(7/9)+tan^(-1)(1/8)`

`=tan^(-1)((7/9+1/8)/(1-(7/9)xx(1/8)))`

`=tan^(-1)((56+9)/(72-7))`

`S=tan^(-1)(65/65)=tan^(-1)1=pi/4`

Hence, `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`

shaalaa.com
  Is there an error in this question or solution?
2012-2013 (March) Delhi Set 1

RELATED QUESTIONS

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


Find: ∫ sin x · log cos x dx


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


If `"tan"^-1 ("cot"  theta) = 2theta, "then"  theta` is equal to ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×