English

Find the Direction Cosines of the Line (x=2)/2=(2y-5)/3; z=-1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the direction cosines of the line 

`(x+2)/2=(2y-5)/3; z=-1`

Solution

Equation of line is  `(x+2)/2=(2y-5)/3;z=-1`

`(x+2)/2=(y-5/2)/(3/2)=(z+1)/1`

Direction ratios of the line are 2, 3/2, 1.

∴Direction cosines of the line are

`2/(sqrt(4+(9/4)+1)),(3/2)/sqrt(4+9/4+1),1/sqrt(4+9/4+1)`

`i.e 2/(1/2sqrt(29/4)),(3/2)/(1/2sqrt(29/4)),1/(1/2sqrt(29/4))  `

`4/sqrt(29),3/sqrt(29),2/sqrt(29)`

 

 

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

RELATED QUESTIONS

Direction cosines of the line passing through the points A (- 4, 2, 3) and B (1, 3, -2) are.........


Find the direction cosines of a line which makes equal angles with the coordinate axes.


If the lines `(x-1)/(-3) = (y -2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z -6)/(-5)` are perpendicular, find the value of k.


Find the direction cosines of the sides of the triangle whose vertices are (3, 5, −4), (−1, 1, 2) and (−5, −5, −2).


Find the angle between the vectors with direction ratios proportional to 1, −2, 1 and 4, 3, 2.


Find the acute angle between the lines whose direction ratios are proportional to 2 : 3 : 6 and 1 : 2 : 2.


Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, −1) and (4, 3, −1).


Find the angle between the lines whose direction cosines are given by the equations

2l + 2m − n = 0, mn + ln + lm = 0


What are the direction cosines of X-axis?


Write the distances of the point (7, −2, 3) from XYYZ and XZ-planes.


Write the ratio in which YZ-plane divides the segment joining P (−2, 5, 9) and Q (3, −2, 4).


Write the ratio in which the line segment joining (abc) and (−a, −c, −b) is divided by the xy-plane.


Write the coordinates of the projection of the point P (2, −3, 5) on Y-axis.


For every point P (xyz) on the xy-plane,

 


A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is


A parallelopiped is formed by planes drawn through the points (2, 3, 5) and (5, 9, 7), parallel to the coordinate planes. The length of a diagonal of the parallelopiped is


If the x-coordinate of a point P on the join of Q (2, 2, 1) and R (5, 1, −2) is 4, then its z-coordinate is


The distance of the point P (abc) from the x-axis is 


If P (3, 2, −4), Q (5, 4, −6) and R (9, 8, −10) are collinear, then R divides PQ in the ratio


If O is the origin, OP = 3 with direction ratios proportional to −1, 2, −2 then the coordinates of P are


 Find the equation of the lines passing through the point (2, 1, 3) and perpendicular to the lines


Find the vector equation of a line passing through the point (2, 3, 2) and parallel to the line `vec("r") = (-2hat"i"+3hat"j") +lambda(2hat"i"-3hat"j"+6hat"k").`Also, find the distance between these two lines.


Find the direction cosines of a vector whose direction ratios are

`1/sqrt(2), 1/2, 1/2`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 4hat"j" + 8hat"k"`


Find the direction cosines and direction ratios for the following vector

`hat"j"`


Find the direction cosines and direction ratios for the following vector

`5hat"i" - 3hat"j" - 48hat"k"`


Find the direction cosines and direction ratios for the following vector

`3hat"i" - 3hat"k" + 4hat"j"`


If a line makes an angle of 30°, 60°, 90° with the positive direction of x, y, z-axes, respectively, then find its direction cosines.


If α, β, γ are the angles that a line makes with the positive direction of x, y, z axis, respectively, then the direction cosines of the line are ______.


If a line makes angles `pi/2, 3/4 pi` and `pi/4` with x, y, z axis, respectively, then its direction cosines are ______.


If a variable line in two adjacent positions has direction cosines l, m, n and l + δl, m + δm, n + δn, show that the small angle δθ between the two positions is given by δθ2 = δl2 + δm2 + δn


What will be the value of 'P' so that the lines `(1 - x)/3 = (7y - 14)/(2P) = (z - 3)/2` and `(7 - 7x)/(3P) = (y - 5)/1 = (6 - z)/5` at right angles.


The d.c's of a line whose direction ratios are 2, 3, –6, are ______.


Equation of a line passing through point (1, 2, 3) and equally inclined to the coordinate axis, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×