Advertisements
Advertisements
Question
If `sin^-1(1-x) -2sin^-1x = pi/2` then x is
- -1/2
- 1
- 0
- 1/2
Solution
(c)
`sin^-1(1-x)-2sin^-1x=pi/2`
`sin^-1(1-x)=pi/2+2sin^-1x`
`(1-x)=sin(pi/2+2sin^-1x)`
`(1-x)=cos(2sin^-1x)`
`(1-x)=cos(cos^-1(1-2x^2))`
`(1-x)=1-2x^2`
`2x^2-x=0`
`x(2x-1)=0`
`x=0 or 2x-1=0`
`x=0 or x=1/2`
`"for "x =1/2`
`sin^-1(1-x)-2sin^-1x=sin^-1(1/2)-2sin^-1(1/2)=-sin^-1(1/2)=pi/6`
So x=1/2 is not solution of the given equation
for x=0
`sin^-1(1-x)-2sin^-1x=sin^-1(1)-2sin^-1(0)=pi/2-0=pi/2`
So x = 0 is a valid solution of the given equation.
APPEARS IN
RELATED QUESTIONS
Show that `2sin^-1(3/5) = tan^-1(24/7)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the value of the following:
`tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of the following:
`cos^(-1) (cos (13pi)/6)`
Find the principal value of `sin^-1(1/sqrt2)`
Find the domain of the following function:
`f(x)sin^-1sqrt(x^2-1)`
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
Solve for x:
`tan^-1 [(x-1),(x-2)] + tan^-1 [(x+1),(x+2)] = x/4`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of cosA
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
In ΔABC prove that `(b + c - a) tan "A"/(2) = (c + a - b)tan "B"/(2) = (a + b - c)tan "C"/(2)`.
Find the principal value of the following: cosec- 1(2)
Find the principal value of the following: cos- 1`(-1/2)`
Prove the following:
`sin^-1(1/sqrt(2)) -3sin^-1(sqrt(3)/2) = -(3π)/(4)`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`2tan^-1(1/3) = tan^-1(3/4)`
Find the principal solutions of the following equation:
tan 5θ = -1
Find the principal solutions of the following equation:
cot 2θ = 0.
`tan^-1(tan (7pi)/6)` = ______
Prove that `2 tan^-1 (3/4) = tan^-1(24/7)`
If tan−1x + tan−1y + tan−1z = π, then show that `1/(xy) + 1/(yz) + 1/(zx)` = 1
Prove that sin `[tan^-1 ((1 - x^2)/(2x)) + cos^-1 ((1 - x^2)/(1 + x^2))]` = 1
Show that `sin^-1(3/5) + sin^-1(8/17) = cos^-1(36/85)`
Prove that `2 tan^-1 (1/8) + tan^-1 (1/7) + 2tan^-1 (1/5) = pi/4`
Find the principal value of the following:
cosec-1 (2)
Find the principal value of the following:
`sec^-1 (-sqrt2)`
Prove that:
2 tan-1 (x) = `sin^-1 ((2x)/(1 + x^2))`
Prove that:
`tan^-1 (4/3) + tan^-1 (1/7) = pi/4`
Show that `tan^-1 (1/2) + tan^-1 (2/11) = tan^-1 (3/4)`
Prove that `tan^-1 (m/n) - tan^-1 ((m - n)/(m + n)) = pi/4`
Show that `sin^-1 (- 3/5) - sin^-1 (- 8/17) = cos^-1 (84/85)`
Express `tan^-1 [(cos x)/(1 - sin x)], - pi/2 < x < (3pi)/2` in the simplest form.
Express `tan^-1 ((cos x - sin x)/(cos x + sin x))`, 0 < x < π in the simplest form.
Find the principal value of cosec–1(– 1)
Find the principal value of `tan^-1 (sqrt(3))`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
The principle solutions of equation tan θ = -1 are ______
The value of 2 `cot^-1 1/2 - cot^-1 4/3` is ______
The value of cot (- 1110°) is equal to ______.
If `3sin^-1((2x)/(1 + x^2)) - 4cos^-1((1 - x^2)/(1 + x^2)) + 2tan^-1((2x)/(1 - x^2)) = pi/3`, then x is equal to ______
The domain of y = cos–1(x2 – 4) is ______.
The equation tan–1x – cot–1x = `(1/sqrt(3))` has ______.
Show that `sin^-1 5/13 + cos^-1 3/5 = tan^-1 63/16`
All trigonometric functions have inverse over their respective domains.
If `"x + y" = "x"/4` then (1+ tanx)(1 + tany) is equal to ____________.
If tan-1 3 + tan-1 x = tan-1 8, then x = ____________.
`"sin"^-1 (1/sqrt2)`
If tan-1 (x – 1) + tan-1 x + tan-1 (x + 1) = tan-1 3x, then the values of x are ____________.
If 6sin-1 (x2 – 6x + 8.5) = `pi`, then x is equal to ____________.
`"tan"(pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
3 tan-1 a is equal to ____________.
`"cos" ["tan"^-1 {"sin" ("cot"^-1 "x")}]` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt "cos" alpha) = "x",` then sinx is equal to ____________.
The inverse of `f(x) = sqrt(3x^2 - 4x + 5)` is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
What is the principal value of cosec–1(2).
Find the value, if sin–1x = y, then `->`:-
`sin(tan^-1x), |x| < 1` is equal to
Value of `sin(pi/3 - sin^1 (- 1/2))` is equal to
If f(x) = x5 + 2x – 3, then (f–1)1 (–3) = ______.
If θ = `sin^-1((2x)/(1 + x^2)) + cos^-1((1 - x^2)/(1 + x^2))`, for `x ≥ 3/2` then the absolute value of `((cosθ + tanθ + 4)/secθ)` is ______.
Number of values of x which lie in [0, 2π] and satisfy the equation
`(cos x/4 - 2sinx) sinx + (1 + sin x/4 - 2cosx)cosx` = 0
If sin–1a + sin–1b + sin–1c = π, then find the value of `asqrt(1 - a^2) + bsqrt(1 - b^2) + csqrt(1 - c^2)`.
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
The value of `cos^-1(cos(π/2)) + cos^-1(sin((2π)/2))` is ______.
If 2 tan–1 (cosx) = tan–1 (2 cosec x), then sin x + cos x is equal to ______.
If cos–1 x > sin–1 x, then ______.
If –1 ≤ x ≤ 1, the prove that sin–1 x + cos–1 x = `π/2`
`sin[π/3 + sin^-1 (1/2)]` is equal to ______.