Advertisements
Advertisements
Question
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Solution
Let `I=int_0^pi(xsinx)/(1+sinx)dx`
`=int_0^pi((pi-x)sin(pi-x))/(1+sin(pi-x))dx [because int_0^a f(x)dx=int_0^af(a-x)dx]`
`=int_0^pi((pi-x)sinx)/(1+sinx)dx`
`=int_0^pi(pisinx)/(1+sinx)dx-I`
`I=int_0^pi(pisinx)/(1+sinx)dx-I`
`2I=int_0^pi(pisinx.(1-sinx))/((1+sinx)(1-sinx))dx`
`2I=int_0^pi(pisinx.(1-sinx))/(1-sin^2x)dx`
`(2I)/pi=int_0^pi(sinx.(1-sinx))/cos^2xdx`
`(2I)/pi=int_0^pi(sinx.-sin^2x)/cos^2xdx`
`(2I)/pi=int_0^pi(sinx)/cos^2xdx-int_0^pi(sin^2x)/cos^2xdx`
`(2I)/pi=int_0^pisecx.tanxdx-int_0^pitan^2xdx`
`(2I)/pi=[secx]_0^pi-int_0^pi(sec^2x-1)dx`
`(2I)/pi=[secpi-sec0]-int_0^pisec^2x.dx+int_0^pi1dx`
`(2I)/pi=[-1-1]-[tanx]_0^pi_[x]_0^pi`
`(2I)/pi=[-2]-[tanpi-tan0]+pi`
`(2I)/pi=[-2]-0+pi`
`thereforeI=((pi-2)pi)/2`
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_1^2 1/(2x + 3) dx` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^{pi/2} log(tanx)dx` = ______
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_0^pi sin^2x.cos^2x dx` = ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`