Advertisement Remove all ads

Areas of Combinations of Plane Figures

Advertisement Remove all ads



So far, we have calculated the areas of different figures separately. Let us now try to calculate the areas of some combinations of plane figures.
Example 4 : In Fig., two circular flower beds have been shown on two sides of a square lawn ABCD of side 56 m. If the centre of each circular flower bed is the point of intersection O of the diagonals of the square lawn, find the sum of the areas of the lawn and the flower beds.

For sector ODC, 
∠DOC= θ= 90° (because O is the point of intersection of diagonals of square ABCD
`"Diagonal BD"= "side"sqrt2= 56sqrt2`

therefore, OD=r = `(56sqrt2)/2= 28sqrt2cm`

area of sector ODC= `θ/360 xx πr^2`

                               =`(90 xx 22 xx 28sqrt2 xx 28sqrt2)/360 xx 7`

                               `= 22 xx 2 xx 28`

area of sector ODC= `22 xx 56m^2`

area of ΔDOC= `1/2 xx OD xx OC`

                      = `1/2 xx  28sqrt2 xx 28sqrt 2`

area of ΔDOC= `19 xx 56m^2`

area of flower beds= `2 xx (22 xx 56)- (19 xx 56)`
                               =` 2 xx 56  (22-19)`
                               = `112 xx 8`
area of flower beds= `896m^2`
`"area"   "of"   "lawn"= "side"^2= 56^2`
`"area"  "of"   "lawn"= 3136m^2`
`"Total"   "area" = 3136+896`
`"Total"   "area" = 4032m^2`

If you would like to contribute notes or other learning material, please submit them using the button below.
Advertisement Remove all ads

View all notifications

      Forgot password?
View in app×