University of Mumbai Syllabus For Semester 3 (SE Second Year) Applied Mathematics 3: Knowing the Syllabus is very important for the students of Semester 3 (SE Second Year). Shaalaa has also provided a list of topics that every student needs to understand.

The University of Mumbai Semester 3 (SE Second Year) Applied Mathematics 3 syllabus for the academic year 2021-2022 is based on the Board's guidelines. Students should read the Semester 3 (SE Second Year) Applied Mathematics 3 Syllabus to learn about the subject's subjects and subtopics.

Students will discover the unit names, chapters under each unit, and subtopics under each chapter in the University of Mumbai Semester 3 (SE Second Year) Applied Mathematics 3 Syllabus pdf 2021-2022. They will also receive a complete practical syllabus for Semester 3 (SE Second Year) Applied Mathematics 3 in addition to this.

## University of Mumbai Semester 3 (SE Second Year) Applied Mathematics 3 Revised Syllabus

University of Mumbai Semester 3 (SE Second Year) Applied Mathematics 3 and their Unit wise marks distribution

### University of Mumbai Semester 3 (SE Second Year) Applied Mathematics 3 Course Structure 2021-2022 With Marking Scheme

## Syllabus

Linearity property, use of theorems to find inverse Laplace Transform, Partial fractions method and convolution theorem.

Applications to solve initial and boundary value problems involving ordinary differential equations with one dependent variable.

Functions of complex variable, Analytic function, necessary and sufficient conditions for f (z) to be analytic (without proof), Cauchy-Riemann equations in polar coordinates

Milne- Thomson method to determine analytic function f (z) when it’s real or imaginary or its combination is given. Harmonic function, orthogonal trajectories

Mapping: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations such as Rotation and magnification, invertion and reflection, translation

Line integral of a function of a complex variable, Cauchy’s theorem for analytic function, Cauchy’s Goursat theorem (without proof), properties of line integral,Cauchy’s integral formula and deductions.

Residue theorem, application to evaluate real integral of type.

Orthogonal and orthonormal functions, Expressions of a function in a series of orthogonal functions. Dirichlet’s conditions. Fourier series of periodic function with period

Dirichlet’s theorem(only statement), even and odd functions, Half range sine and cosine series, Parsvel’s identities (without proof)

Numerical Solution of Partial differential equations using Bender-Schmidt Explicit Method, Implicit method( Crank- Nicolson method) Successive over relaxation method.

Partial differential equations governing transverse vibrations of an elastic string its solution using Fourier series.

Heat equation, steady-state configuration for heat flow

Two and Three dimensional Laplace equations.