MCQ
The length of the latus-rectum of the parabola 4y2 + 2x − 20y + 17 = 0 is
Options
3
6
1/2
9
Advertisement Remove all ads
Solution
1/2
Given:
4y2 + 2x − 20y + 17 = 0
\[\Rightarrow y^2 + \frac{x}{2} - 5y + \frac{17}{4} = 0\]
\[ \Rightarrow \left( y - \frac{5}{2} \right)^2 + \frac{x}{2} - 2 = 0\]
\[ \Rightarrow \left( y - \frac{5}{2} \right)^2 = - 1\left( \frac{x}{2} - 2 \right)\]
\[ \Rightarrow \left( y - \frac{5}{2} \right)^2 = \frac{- 1}{2}\left( x - 4 \right)\]
Let \[X = x - 4, Y = y - \frac{5}{2}\]
\[\therefore Y^2 = \frac{- X}{2
∴ Length of the latus rectum = 4a =∴ Length of the latus rectum = 4a =}\]
\[\frac{1}{2}\] units
Concept: Parabola - Latus Rectum
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads