Advertisement Remove all ads

Prove that Log [ Sin ( X + I Y ) Sin ( X − I Y ) ] = 2 Tan − 1 ( Cot X Tanh Y ) - Applied Mathematics 1

Prove that log `[sin(x+iy)/sin(x-iy)]=2tan^-1 (cot x tanhy)`

Advertisement Remove all ads

Solution

Consider, log[sin(x+iy)]=log[sin x cos(iy) + cos x sin (iy)]
∴log[sin(x+iy)]=log[sin x cosh y + icos x sinh y] {∵cos(ix)=cosh x; sin (ix)=isinh x;} 

∴` Log [sin(x+iy)]1/2log[sin^2 xcosh^2 y+cos^2 x sinh^2y]+itan^-1|(cosxsinhy)/(sin xcosh y)|`

`{∵ log (x-iy)=1/2 log (x^2+y^2)+itan^-1|y/x|}`

∴` log[sin(x+iy)]1/2log [sin^2x cosh^2 y+cos^2xx sinh^2 y]+|cot x tanh y|` 

Taking Conjugate, `log[sin(x-iy)=1/2log [sin^2 x cosh^2 y +cos^2 x sinh^2 y]-itan^1|cotx tanh y|` 

Now, log `[sin(x+iy)/sin(x-iy)]= log [sin(sin(x-iy)]` 

= `{1/2 log [sin2 x cosh2y + cos2 x sinh2 y]+itan-1|cot x tanh y|}`- `{1/2 log [sin2 x cosh 2 y+ cos 2 x sinh2 y]-itan-1|cot x tanhy|}`

= `2 itan^-1(cot x tanh y)` 

∴ `log [sin(x+iy)/sin(x-iy)]=2itan^-1 (cot x tanh y)`

Concept: Expansion of 𝑒^𝑥 , sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x), log(1+x), 𝑠𝑖𝑛−1 (𝑥),𝑐𝑜𝑠−1 (𝑥),𝑡𝑎𝑛−1 (𝑥)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×