Share
Notifications

View all notifications
Advertisement

Selina solutions for Concise Mathematics Class 10 ICSE chapter 24 - Measure of Central Tendency(Mean, Median, Quartiles and Mode) [Latest edition]

Login
Create free account


      Forgot password?
Textbook page

Chapters

Concise Mathematics Class 10 ICSE - Shaalaa.com

Chapter 24: Measure of Central Tendency(Mean, Median, Quartiles and Mode)

Exercise 24(A)Exercise 24(B)Exercise 24(C)Exercise 24(D)Exercise 24(E)

Exercise 24(A) [Page 356]

Selina solutions for Concise Mathematics Class 10 ICSE Chapter 24 Measure of Central Tendency(Mean, Median, Quartiles and Mode) Exercise 24(A) [Page 356]

Exercise 24(A) | Q 1.1 | Page 356

Find the mean of the following set of numbers:  

 6, 9, 11, 12 and 7 

Exercise 24(A) | Q 1.2 | Page 356

Find the mean of the following set of numbers: 

11, 14, 23, 26, 10, 12, 18 and 6 

Exercise 24(A) | Q 2.1 | Page 356

Marks obtained (in mathematics) by 9 student are given below  

60, 67, 52, 76, 50, 51, 74, 45 and 56  

find the arithmetic mean 

 

Exercise 24(A) | Q 2.2 | Page 356

  Marks obtained (in mathematics) by 9 student are given below:
60, 67, 52, 76, 50, 51, 74, 45 and 56 

if marks of each student be increased by 4; what will be the new value of arithmetic mean.

Exercise 24(A) | Q 3 | Page 356

Find the mean of the natural numbers from 3 to 12. 

Exercise 24(A) | Q 4.1 | Page 356

Find the mean of 7, 11, 6, 5, and 6 

Exercise 24(A) | Q 4.2 | Page 356

If each number given in (a) is diminished by 2, find the new value of mean. 

 

Exercise 24(A) | Q 5 | Page 356

If the mean of 6, 4, 7, ‘a’ and 10 is 8. Find the value of ‘a’ 

Exercise 24(A) | Q 6 | Page 356

The mean of the number 6, ‘y’, 7, ‘x’ and 14 is 8. Express ‘y’ in terms of ‘x’. 

Exercise 24(A) | Q 7 | Page 356

The age of 40 students are given in the following table : 

 Age (in yrs)  12  13 14 15 16 17 18
 Frequency 2 4 6 9 8 7 4    

Find the Arithmetic mean.

Exercise 24(A) | Q 8 | Page 356

If 69.5 is the mean of 72, 70, ‘x’, 62, 50, 71, 90, 64, 58 and 82, find the value of ‘x’. 

Exercise 24(A) | Q 9 | Page 356

The following table gives the hights of plants in centimeter. If the mean height if plants is 60.95 cm; find the value of `f`. 

Height (cm)  50 55 58 60 65 70 71
 no of plants  2 4 10 f 5 4 3
Exercise 24(A) | Q 10 | Page 356

From the data given below . calculate the mean wage, correct to the nnearst rupee. 

 

category  A B C D E F
 Wages (Rs,day)(x) 50 60 70 80 90 100
no.of workers 2 4 8 12 10 6

(1) If the number of workers in each category is doubled, , what would be the new mean wage? 

(2) If the wages per day in each category are incresed  by 60% what is the new mean wages? 

(3) If the number of workers in each caategory is doubled is and the wages per day worker are reduced by 40%, what would be the new mean wage?

Exercise 24(A) | Q 11 | Page 356

The content of 100 match  boxes were  checked to detemine the number of matches they contained . 

no of matches 35 36 37 38 39 40 41
 no of boxes 6 10 18 25 21 12 8

(1) Calculate, correct to one decimal place, the means number of matches per box . 

(2) Determine how many extra matches would have to be added to the the total contents of the total content of the 100 boxes to bring the mean up to exactly 39 matches.  

 

Exercise 24(A) | Q 12 | Page 356

If the mean of the following distribution is 3, find the value of p.

x 1 2 3 5 p + 4
f 9 6 9 3 6
Exercise 24(A) | Q 13 | Page 356

In th following table, Σf = 200 and mean = 73. find the missing frequencies f1, and f2.

x 0 50 100 150 200 250
f 46 f1 f2 25 10 5
Exercise 24(A) | Q 14 | Page 356

Find the arithmetic mean (correct to the nearest whole-number) by using step-deviation method.

x

5

10

15

20

25

30

35

40

45

50

f

20

43

75

67

72

45

39

9

8

6

Exercise 24(A) | Q 15 | Page 356

Find the mean (correct to one place of decimal) by using short-cut method.

x

40

41

43

45

46

49

50

f

14

28

38

50

40

20

10

Exercise 24(B) [Pages 362 - 363]

Selina solutions for Concise Mathematics Class 10 ICSE Chapter 24 Measure of Central Tendency(Mean, Median, Quartiles and Mode) Exercise 24(B) [Pages 362 - 363]

Exercise 24(B) | Q 1 | Page 362

The following table givens the age of 50 student of a class . find the arithmetic mean of thier agges. 

Age- Years 16-18 18-20 20-22 22-24 24-26
No.of students  2 7 21 17 3
Exercise 24(B) | Q 2.1 | Page 362

The following table given the weekly wages of workers in a factory. 

 Weekly Wages   No.of workers
 50-55 5
55-60 20
60-65 10
65-70 10
70-75 9
75-80 6
80-85 12
85-90 8

Calculate the mean by using: 

Direct Method 

Exercise 24(B) | Q 2.2 | Page 362
  Weekly wages (Rs)  No.of workers 
 50-55 5
55-60 20
60-65 10
65-70 10
70-75 9
75-80 6
80-85 12
85-90 8

Calculate the mean by ussing: 

Short-Cut method 

Exercise 24(B) | Q 3.1 | Page 362

The following are the marks obtained by 70 boys in a class test: 

 Marks   No. of boys 
30-40 10
40-50 12
50-60 14
60-70 12
70-80 9
80-90 7
90-100 6

Calculate the mean  by : 

Short - cut method

Exercise 24(B) | Q 3.2 | Page 362

The following are the marks obtained by 70 boys in a class test: 

 Marks   No. of boys 
30-40 10
40-50 12
50-60 14
60-70 12
70-80 9
80-90 7
90-100 6

Calculate the mean  by :  

Step - deviation method 

Exercise 24(B) | Q 4 | Page 362

Find mean by step- deviation method: 

 C.i   63-70 70-77 77-84 84-91 91-98 98-105 105-112
 Freq  9 13 27 38 32 16 15
Exercise 24(B) | Q 5 | Page 362

The mean of the following distribution is `21 1/7 `. find the value of `f` 

C.I  0-10 10-20 20-30 30-40 40-50
Freq  8 22 31 f 2
Exercise 24(B) | Q 6 | Page 362

Using step- deviation method , calculate the mean marks of the following distribution. 

 C.I 50-55 55-60 60-65 65-70 70-75 75-80 80-85 85-90
Frequency 5 20 10 10 9 6 12 8
Exercise 24(B) | Q 7 | Page 362

Using the information given in the adjoining  histogram, calculate the mean. 

Exercise 24(B) | Q 8 | Page 362

If the mean of the following obseervations is 54, find the value of `p`  

 Class 0-20 20-40 40-60 60-80 80-100
 Frequency 7 p 10 9 13
Exercise 24(B) | Q 9 | Page 362

The mean of the folowing is 62.8 and the sum of all the frequencies is 50. find the missing frequency `f_1 and f_2` 

Class  0-20 20-40 40-60 60-80 80-100 100-120
Freq 5 `f_1` 10  `f_2` 7 8

 

Exercise 24(B) | Q 10 | Page 363

Calculate the mean of the distribution given below using the short cut method.

Marks 11 - 20 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80
No. of students 2 6 10 12 9 7 4

Exercise 24(C) [Pages 372 - 373]

Selina solutions for Concise Mathematics Class 10 ICSE Chapter 24 Measure of Central Tendency(Mean, Median, Quartiles and Mode) Exercise 24(C) [Pages 372 - 373]

Exercise 24(C) | Q 1 | Page 372

A student got the following marks in 9 questions of a question paper.
3, 5, 7, 3, 8, 0, 1, 4 and 6.
Find the median of these marks. 

Exercise 24(C) | Q 2 | Page 372

The weights (in kg) of 10 students of a class are given below:
21, 28.5, 20.5, 24, 25.5, 22, 27.5, 28, 21 and 24.
Find the median of their weights. 

Exercise 24(C) | Q 3.1 | Page 372

The marks obtained by 19 students of a class are given below:  

27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28. Find:  median 

Exercise 24(C) | Q 3.2 | Page 372

The marks obtained by 19 students of a class are given below:
27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28. Find: 

lower quartile

Exercise 24(C) | Q 3.3 | Page 372

The marks obtained by 19 students of a class are given below:
27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28. Find: 

upper quartile  

Exercise 24(C) | Q 3.4 | Page 372

The marks obtained by 19 students of a class are given below:
27, 36, 22, 31, 25, 26, 33, 24, 37, 32, 29, 28, 36, 35, 27, 26, 32, 35 and 28. Find: 

interquartile range 

Exercise 24(C) | Q 4.1 | Page 372

From the following data, find: 

Median 

25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83 

Exercise 24(C) | Q 4.2 | Page 372

From the following data, find:  

Upper quartile 

25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83 

Exercise 24(C) | Q 4.3 | Page 372

From the following data, find: 

Inter-quartile range

25, 10, 40, 88, 45, 60, 77, 36, 18, 95, 56, 65, 7, 0, 38 and 83 

 

Exercise 24(C) | Q 5 | Page 372

The ages of 37 students in a class are given in the following table: 

Age (in year) 11 12 13 14 15 16
Frequency  2 4 6 10 8 7
Exercise 24(C) | Q 6 | Page 372

The weight of 60 boys are given in the following distribution table  

Weight (kg) 37 38 39 40 41
No.of boys 10 14 18 12 6

Find 

(1) median 

(2) lower quartile 

(3)Upper quartile 

(4) Interquatile range  

Exercise 24(C) | Q 7 | Page 372

Estimate the median for the given data by drawing an ogive: 

Class  0-10 10-20 20-30 30-40 40-50
 Frequency  4 9 15 14 8
Exercise 24(C) | Q 8 | Page 372

By drawing an ogive, estimate the following frequency distribution: 

Weight (kg) 10-15 15-20 20-25 25-30 30-35
No.of boys 11 25 12 5 2
Exercise 24(C) | Q 9 | Page 373

From the following cumulative frequency table , find :  

Median 

Lower quartile 

Upper quaetile 

Marks (less than ) 10 20 30 40 50 60 70 80 90 100
Cumulative frequency 5 24 37 40 42 48 70 77 79 80 
Exercise 24(C) | Q 10 | Page 373

In  a school, 100 pupils have heights as tabulate below: 

 Height (in cm )  No. of pupils 
121-130 12
131-40 16
141-150 30
151-160 20
161-170 14
171-180 8

Find the median height by drawing an ogive. 

Exercise 24(D) [Page 374]

Selina solutions for Concise Mathematics Class 10 ICSE Chapter 24 Measure of Central Tendency(Mean, Median, Quartiles and Mode) Exercise 24(D) [Page 374]

Exercise 24(D) | Q 1.1 | Page 374

Find the mode of the following data:
 7, 9, 8, 7, 7, 6, 8, 10, 7 and 6

Exercise 24(D) | Q 1.2 | Page 374

Find the mode of the following data: 

9, 11, 8, 11, 16, 9, 11, 5, 3, 11, 17 and 8

Exercise 24(D) | Q 2 | Page 374

The following table shows the frequency distribution of heights of 51 boys: 

 Height (cm) 120 121 122 123 124
Frequency 5 8 18 10 9

find the mode of heights.

Exercise 24(D) | Q 3 | Page 374

Find the mode of following data, using a histogram: 

Class  0-10 10-20 20-30 30-40 40-50
Frequency 5 12 20 9 4
Exercise 24(D) | Q 4 | Page 374

The folloeing table shows the expenditure  of 60 boys on books. find the mode of their expenditure:  

 Expenditure (Rs)  No.of students 
20-25 4
25-30 7
30-35 23
35-40 18
40-45 6
45-50 2
Exercise 24(D) | Q 5 | Page 374

Find the median and mode for the set of numbers:
2, 2, 3, 5, 5, 5, 6, 8 and 9 

Exercise 24(D) | Q 6.1 | Page 374

A boy scored following marks in various class tests during a term; each test being marked out of 20.
15, 17, 16, 7, 10, 12, 14, 16, 19, 12 and 16 

What are his modal marks? 

Exercise 24(D) | Q 6.2 | Page 374

A boy scored following marks in various class tests during a term; each test being marked out of 20.
15, 17, 16, 7, 10, 12, 14, 16, 19, 12 and 16 

What are his median marks? 

Exercise 24(D) | Q 6.3 | Page 374

A boy scored following marks in various class tests during a term; each test being marked out of 20.
15, 17, 16, 7, 10, 12, 14, 16, 19, 12 and 16  

What are his total marks?

Exercise 24(D) | Q 6.4 | Page 374

A boy scored following marks in various class tests during a term; each test being marked out of 20.
15, 17, 16, 7, 10, 12, 14, 16, 19, 12 and 16
 What are his mean marks? 

Exercise 24(D) | Q 7 | Page 374

Find the mean, median and mode of the following marks obtained by 16 students in a class test marked out of 10 marks.  

0, 0, 2, 2, 3, 3, 3, 4, 5, 5, 5, 5, 6, 6, 7 and 8. 

Exercise 24(D) | Q 8 | Page 374

At a shooting competition the score of a competitor were as given below  

Score 0 1 2 3 4 5
No.of shots  0 3 6 4 7 5

(1)What was his modal score? 

(2) What was his median score? 

(3) What was his total score ? 

(4) What was his mean score?

Exercise 24(E) [Pages 375 - 377]

Selina solutions for Concise Mathematics Class 10 ICSE Chapter 24 Measure of Central Tendency(Mean, Median, Quartiles and Mode) Exercise 24(E) [Pages 375 - 377]

Exercise 24(E) | Q 1 | Page 375

The following distribution represents the height of 160 students of a school.

Height (in cm) No. of Students
140 – 145 12
145 – 150 20
150 – 155 30
155 – 160 38
160 – 165 24
165 – 170 16
170 – 175 12
175 – 180 8

Draw an ogive for the given distribution taking 2 cm = 5 cm of height on one axis and 2 cm = 20 students on the other axis. Using the graph, determine:

(1) The median height.
(2) The interquartile range.
(3) The number of students whose height is above 172 cm.

Exercise 24(E) | Q 3 | Page 375

The mean of 1, 7, 5, 3, 4 and 4 is m. The numbers 3, 2, 4, 2, 3, 3 and p have mean m-1 and median q. Find p and q.

Exercise 24(E) | Q 4 | Page 375

In a malaria epidemic, the number of cases diagnosed were as follows: 

Date july  1 2 3 4 5 6 7 8 9 10 11 12
num 5 12 20 27 46 30 31 18 11 5 0 1

on what days do the mode and upper and lower quartiles occur? 

Exercise 24(E) | Q 5 | Page 375

Income of 100 students of their parents is given as follows

Income
(in thousand Rs.)
No. of students (f)
0 - 8 8
8 - 16 35
16 - 24 35
24 - 32 14
32 - 40 8

Draw an ogive for the given distribution on a graph sheet.
Use a suitable scale for your ogive. Use your ogive to estimate:
(i) the median income.
(ii) Calculate the income below which freeship will be awarded to students if their parents income is in the bottom 15%
(iii) Mean income.

Exercise 24(E) | Q 6 | Page 375

The marks of 20 students in a test were as follows:
2, 6, 8, 9, 10, 11, 11, 12, 13, 13, 14, 14, 15, 15, 15, 16, 16, 18, 19 and 20.
Calculate:
(i) the mean (ii) the median (iii) the mode 

Exercise 24(E) | Q 7 | Page 375

The marks obtained by 120 students in a mathematics test is given below: 

Dr

Marks  No.of students 
0-10 5
10-20 9
20-30 16
30-40 22
40-50 26
50-60 18
60-70 11
70-80 6
80-90 4
90-100 3

Draw an ogive for the given distributions on a graph sheet. use a suitable scale for your ogive. use your ogive to estimate:
(i) the median 
(ii) the number of student who obtained more than 75% in test. 
(iii) the number of students who did not pass in the test if the pass percentage was 40.
(iv) the lower quartile

Exercise 24(E) | Q 8 | Page 376

Using a graph paper, draw an ogive for the following distribution which shows a record of the width in kilograms of 200 students. 

Weight   Frequency 
40-45 5
45-50 17
50-55 22
55-60 45
60-65 51
65-70 31
70-75 20
75-80 9

Use your ogive to estimate the following : 

(1) The percentage of student weighning 55 kgor more 

(2) The weight above the heavist 30% of the student fail 

(3) The number of students who are 

(a) underweight 

(b) overweight 

If 55.70 kg considered as sandard weight. 

Exercise 24(E) | Q 9 | Page 376

The distribution, given below, shows the marks obtained by 25 students in an  aptitude test. find the mean, median and mode of the distribution. 

Marks obtained 5 6 7 8 9 10
No.of students  3 9 6 4 2 1
Exercise 24(E) | Q 10 | Page 376

The mean of the following distribution in 52 and the frequency of class interval 30-40 'f' find f 

C.I 10-20 20-30 30-40 40-50 50-60 60-70 70-80
freq 5 3 f 7 2 6 13

 

Exercise 24(E) | Q 11 | Page 376

The monthly income of a group of 320 employee in a company is given below 

Monthly income (thousands)  No.of employee 
6-7 20
7-8 45
8-9 65
9-10 95
10-11 60
11-12 30
12-13 5

Draw an ogive of the distribution on a graph paper taking 2 cm = rS 1000 on one axis and 2 cm = 50 employee on the other axis. From the graph detemine: 

(1) the median wage. 

(2) number of employee whose income is below Rs 8500 

(3) If salary of a senior employee is above Rs11,500 find the number of senior employee  in the company. 

(4) the upper quartile.

Exercise 24(E) | Q 12 | Page 376

A mathematics aptitude test of 50 students was recored as follows: 

Marks No. of students
50-60 4
60-70 8
70-80 14
80-90 19
90-100 5

Draw a histrogram for the above data using a graph paper and locate the mode. 

Exercise 24(E) | Q 13 | Page 376

Marks obtained by 200 students in an examination are given below: 

Marks  No.of students
0-10 5
10-20 11
20-30 10
30-40 20
40-50 28
50-60 37
60-70 40
70-80 29
80-90 14
90-100 6

Draw an ogive for the given distribution taking 2 cm = 10 marks on one axis and 2 cm = 20 students on the other axis. Using the graph, determine

1) The median marks.

2) The number of students who failed if minimum marks required to pass is 40.

3) If scoring 85 and more marks are considered as grade one, find the number of students who secured grade one in the examination.

Exercise 24(E) | Q 14 | Page 377

Marks obtained by 40 students in a short assessment is given below, where a and b are two missing data.

Marks 5 6 7 8 9
Number of Students 6 a 16 13 b

If the mean of the distribution is 7.2, find a and b.

Exercise 24(E) | Q 15 | Page 377

Find the mode and the median of the following frequency distributions. 

x 10 11 12 13 14 15
f 1 4 7 5 9 3

 

Exercise 24(E) | Q 20 | Page 377

The mean of following numbers is 68. Find the value of ‘x’.

45, 52, 60, x, 69, 70, 26, 81 and 94

Hence estimate the median.

Exercise 24(E) | Q 21 | Page 377

The marks of 10 students of a class in an examination arranged in ascending order are as follows:

13, 35, 43, 46, x, x + 4, 55, 61, 71, 80

If the median marks is 48, find the value of x. Hence find the mode of the given data.

Exercise 24(E) | Q 22 | Page 377

The daily wages of 80 workers in a project are given below.

Wages
(in Rs.)
400-450 450-500 500-550 550-600 600-650 650-700 700-750
No. of
Workers
2 6 12 18 24 13 5

Use a graph paper to draw an ogive for the above distribution. (Use a scale of 2 cm = Rs.
50 on x-axis and 2 cm = 10 workers on y-axis). Use your ogive to estimate:

1) the median wage of the workers

2) the lower quartile wage of workers

3) the numbers of workers who earn more than Rs. 625 daily

Exercise 24(E) | Q 23 | Page 377

The histogram below represents the scores obtained by 25 students in a mathematics mental test. Use the data to :

1) Frame a frequency distribution table

2) To calculate mean

3) To determine the Modal class

Chapter 24: Measure of Central Tendency(Mean, Median, Quartiles and Mode)

Exercise 24(A)Exercise 24(B)Exercise 24(C)Exercise 24(D)Exercise 24(E)
Advertisement
Concise Mathematics Class 10 ICSE - Shaalaa.com

Selina solutions for Concise Mathematics Class 10 ICSE chapter 24 - Measure of Central Tendency(Mean, Median, Quartiles and Mode)

Selina solutions for Concise Mathematics Class 10 ICSE chapter 24 (Measure of Central Tendency(Mean, Median, Quartiles and Mode)) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CISCE Concise Mathematics Class 10 ICSE solutions in a manner that help students grasp basic concepts better and faster.

Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. Selina textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Concise Mathematics Class 10 ICSE chapter 24 Measure of Central Tendency(Mean, Median, Quartiles and Mode) are Median of Grouped Data, Histograms, Ogives (Cumulative Frequency Graphs), Basic Concepts of Statistics, Graphical Representation of Histograms, Graphical Representation of Ogives, Finding the Mode from the Histogram, Finding the Mode from the Upper Quartile, Finding the Mode from the Lower Quartile, Finding the Median, upper quartile, lower quartile from the Ogive, Calculation of Lower, Upper, Inter, Semi-Inter Quartile Range, Measures of Central Tendency - Mean, Median, Mode for Raw and Arrayed Data, Mean of Grouped Data, Mean of Ungrouped Data, Median of Ungrouped Data, Mode of Ungrouped Data, Mode of Grouped Data, Mean of Continuous Distribution.

Using Selina Class 10 solutions Measure of Central Tendency(Mean, Median, Quartiles and Mode) exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in Selina Solutions are important questions that can be asked in the final exam. Maximum students of CISCE Class 10 prefer Selina Textbook Solutions to score more in exam.

Get the free view of chapter 24 Measure of Central Tendency(Mean, Median, Quartiles and Mode) Class 10 extra questions for Concise Mathematics Class 10 ICSE and can use Shaalaa.com to keep it handy for your exam preparation

Advertisement
View in app×