Share

Books Shortlist

# Selina solutions for Class 10 Mathematics chapter 5 - Quadratic Equations

## Selina ICSE Concise Mathematics for Class 10 (2018-2019)

#### Selina Selina ICSE Concise Mathematics Class 10 (2018-2019)

Ex. 5AEx. 5BEx. 5CEx. 5D

#### Chapter 5: Quadratic Equations Exercise 5A solutions [Page 0]

Solve each of the following equations by factorization:

X^2 – 10x – 24 = 0

Solve 2x^2 - 1/2 x = 0

Solve each of the following equations by factorization:

x(x – 5) = 24

Solve each of the following equations by factorization:

9/2x=5+x^2

Solve each of the following equations by factorization :

6/x=1+x

Solve each of the following equations by factorization:

x=(3x+1)/(4x)

Solve each of the following equations by factorization:

x+1/x=2.5

Solve the following quadratic equations by factorization:

(2x – 3)^2 = 49

Solve the following quadratic equations by factorization:

2(x^2 – 6) = 3 ( x – 4)

Solve the following quadratic equations by factorization:

(x + 1) (2x + 8) = (x+7) (x+3)

Solve the following quadratic equations by factorization:

x^2 – (a + b) x + ab = 0

Solve the following quadratic equations by factorization:

(x + 3)^2 – 4(x + 3) – 5 = 0

Solve the following quadratic equations by factorization:

4(2x – 3)^2 – (2x – 3) – 14 = 0

Solve the following quadratic equations by factorization:

(3x-2)/(2x-3)=(3x-8)/(x+4)

Solve the following quadratic equations by factorization:

100/x-100/(x+5)=1

Solve the following quadratic equations by factorization:

(x-3)/(x+3 )+(x+3)/(x-3)=2 1/2

Solve the following quadratic equations by factorization:

4/(x+2)-1/(x+3)=4/(2x+1)

Solve the following quadratic equations by factorization:

5/(x-2)-3/(x+6)=4/x

Solve the following quadratic equations by factorization:

(1+1/(x+1)) (1-1/(x-1))=7/8

Find the quadratic equation, whose solution set is:

{3,5}

Find the quadratic equation, whose solution set is:

{−2, 3}

Find the quadratic equation, whose solution set is:

{5, −4,}

Find the quadratic equation, whose solution set is:

{−3, (−2)/5}

Find the value of x, if a+1=0 and x^2 + ax – 6 = 0

Find the value of x, if a + 1 = 0 and x2 + ax – 6 = 0

Use the substitution y = 2x + 3 to solve for x, if 4 (2x + 3)^2 − (2x + 3) − 14 = 0

Without solving the quadratic equation 6x2 – x – 2=0, find whether x = 2/3 is a solution of this equation or not.

Determine whether x = − 1 is a root of the equation x^2 − 3x + 2 = 0 or not.

If x = 2/3 is a solution of the quadratic equation 7x2+mx – 3=0; Find the value of m.

If x = − 3 and x = 2/3 are solution of quadratic equation mx^2 + 7x + n = 0, find the values of m and n.

If quadratic equation x^2 – (m + 1) x + 6 = 0 has one root as x = 3; find the value of m and the other root of the equation.

#### Chapter 5: Quadratic Equations Exercise 5B solutions [Page 0]

Solve the following equation using the formula

x^2 - 6x = 27

Solve the following equation using the formula

x^2 + 10x + 21 = 0

Solve each of the following equations using the formula:

x^2 + 6x – 10 = 0

Solve each of the following equations using the formula:

x^2 + 2x – 6 = 0

Solve each of the following equations using the formula:

3x^2 + 2x – 1 = 0

Solve the following equations using the formula

2x^2 + 7x + 5 = 0

Solve each of the following equations using the formula:

2/3x=-1/6x^2-1/3

Solve each of the following equations using the formula:

1/15x^2+5/3=2/3x

Solve each of the following equations using the formula:

x^2-6=2sqrt2x

Solve each of the following equations using the formula:

4/x-3=5/(2x+3)

Solve each of the following equations using the formula :

(2x+3)/(x+3)=(x+4)/(x+2)

Solve each of the following equations using the formula:

sqrt6x^2-4x-2sqrt6=0

Solve each of the following equations using the formula:

(2x)/(x-4)+(2x-5)/(x-3)=8 1/3

Solve each of the following equations using the formula:

(x-1)/(x-2)+(x-3)/(x-4)=3 1/3

Without solving comment upon the nature of roots of each of the following equations:

7x2 – 9x + 2 = 0

Without solving comment upon the nature of roots of each of the following equations:

6x2 – 13x + 4 = 0

Without solving comment upon the nature of roots of each of the following equations:

25x^2 − 10x + 1 = 0

Without solving comment upon the nature of roots of each of the following equations :

x^2+2sqrt3x-9=0

Without solving comment upon the nature of roots of each of the following equations:

x^2 – ax – b^2 = 0

Without solving comment upon the nature of roots of each of the following equations:

2x^2 + 8x + 9 = 0

Find the value of p, if the following quadratic equation has equal roots: 4x2 – (p – 2)x + 1 = 0

The equation 3x^2 – 12x + (n – 5) = 0 has equal roots. Find the value of n.

Find the value of m, if the following equation has equal roots : (m – 2)x2 – (5+m)x +16 =0

#### Chapter 5: Quadratic Equations Exercise 5C solutions [Page 0]

Solve the following equations for x and give, in each case, your answer correct to one decimal place :

x2 – 8x+5=0

Solve the following equations for x and give, in given case, your answer correct to one decimal place :

5x2 +10x – 3 =0

Solve each of the following equations for x and give, in each case, your answer correct to two decimal places :

2x2 – 10x +5=0

Solve each of the following equations for x and give, in each case, your answer correct to two decimal places :
4x + 6/x + 13 = 0

Solve each of the following equations for x and give, in each case, your answer correct to two decimal places :

x2 – 3x – 9 =0

Solve the following equations for x and give, in each case, your answer correct to 3 decimal places

3x2 – 12x – 1 =0

Solve the following equations for x and give, in each case, your answer correct to two decimal places :

x^2 - 16x + 6 = 0

Solve the following equations for x and give, in each case, your answer correct to 3 decimal places

2x2 + 11x + 4= 0

Solve:
x4 – 2x2 – 3 =0

Solve x4 – 10x2 +9 =0

Solve : (x2 – x)2 + 5(x2 – x)+ 4=0

Solve (x2 – 3x)2 – 16(x2 – 3x) – 36 =0

Solve sqrt(x/(x- 3)) + sqrt((x - 3)/x) = 5/2

Solve ((2x - 3)/(x -1)) - 4((x - 1)/(2x - 3)) = 3

Solve ((3x + 1)/(x + 1)) + ((x + 1)/(3x + 1)) = 5/2

3sqrt(x/5)+3sqrt(5/x)=10

Solve the equation 2x - 1/x = 7.Write your answer correct to two decimal places.

Solve the following equation and give your answer correct to 3 significant figures: 5x² – 3x – 4 = 0

#### Chapter 5: Quadratic Equations Exercise 5D solutions [Page 0]

Solve (2x)/(x - 3) + 1/(2x + 3) + (3x + 9)/(x - 3)(2x +3) = 0; x != 3, x != - 3/2

Solve: (2x+3)= 81

Solve a^2x^2 - b^2 = 0

Solve x^2 - 11/4 x + 15/8 = 0

Solve x + 4/x = -4; x != 0

Solve: 2x4 – 5x² + 3 = 0

Solve: x4 – 2x² – 3 = 0.

Solve 9(x^2 + 1/x^2) - 9(x - 1/x) - 52 = 0

Solve 2(x^2 + 1/x^2) - (x + 1/x) = 11

Solve (x^2 + 1/x^2) - 3(x - 1/x) - 2 = 0

Solve : (x² + 5x + 4)(x² + 5x + 6) = 120

Solve each of the following equations for x and give, in each case, your answer correct to two decimal places :

x^2 - 5x - 10 = 0

Solve of the following equations, giving answer upto two decimal places.

3x2 – x – 7 =0

Solve (x/(x + 2))^2 - 7(x/(x + 2)) + 12 = 0; x != -2

Solve : x2 – 11x – 12 =0; when x ∈ N

Solve x2 – 4x – 12 =0; when x ∈ I

Solve  2x2 – 9x + 10 =0; when x ∈ Q

Solve : (a + b)²x² – (a + b)x – 6 = 0; a + b ≠ 0

Solve 1/p + 1/q + 1/x = 1/(x + p + q)

Solve x(x + 1) + (x + 2)(x + 3) = 42

Solve 1/(x - 1) - 2/(x + 2) = 3/(x + 3) - 4/(x + 4)

For each equation given below find the values of m so that the equation has equal roots. Also find the solution of equation

(m - 3)x^2 - 4x + 1 = 0

For each equation given below find the values of m so that the equation has equal roots. Also find the solution of equation

3x^2 + 12x + (m + 7) = 0

For each equation given below find the values of m so that the equation has equal roots. Also find the solution of equation

x^2 - (m + 2)x + (m + 5) = 0

Without solving the following quadratic equation Find the value of p for which the roots are equal

px^2 - 4x + 3 = 0

Without solving the following quadratic equation, find the value of m for which the given equation has equation has real and equal roots.

x^2 + 2(m - 1)x + (m + 5) = 0

Ex. 5AEx. 5BEx. 5CEx. 5D

## Selina solutions for Class 10 Mathematics chapter 5 - Quadratic Equations

Selina solutions for Class 10 Maths chapter 5 (Quadratic Equations) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CISCE Selina ICSE Concise Mathematics for Class 10 (2018-2019) solutions in a manner that help students grasp basic concepts better and faster.

Further, we at shaalaa.com are providing such solutions so that students can prepare for written exams. Selina textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Class 10 Mathematics chapter 5 Quadratic Equations are Nature of Roots, Quadratic Equations, Solutions of Quadratic Equations by Factorization.

Using Selina Class 10 solutions Quadratic Equations exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in Selina Solutions are important questions that can be asked in the final exam. Maximum students of CISCE Class 10 prefer Selina Textbook Solutions to score more in exam.

Get the free view of chapter 5 Quadratic Equations Class 10 extra questions for Maths and can use shaalaa.com to keep it handy for your exam preparation

S