#### Chapters

Chapter 2: Exponents

Chapter 3: Squares and Square Root

Chapter 4: Cubes and Cube Roots

Chapter 5: Playing with Numbers

Chapter 6: Sets

Chapter 7: Percent and Percentage

Chapter 8: Profit, Loss and Discount

Chapter 9: Interest

Chapter 10: Direct and Inverse Variations

▶ Chapter 11: Algebraic Expressions

Chapter 12: Identities

Chapter 13: Factorisation

Chapter 14: Linear Equations in one Variable

Chapter 15: Linear Inequations

Chapter 16: Understanding Shapes

Chapter 17: Special Types of Quadrilaterals

Chapter 18: Constructions

Chapter 19: Representing 3-D in 2-D

Chapter 20: Area of a Trapezium and a Polygon

Chapter 21: Surface Area, Volume and Capacity

Chapter 22: Data Handling

Chapter 23: Probability

###### Advertisements

###### Advertisements

## Solutions for Chapter 11: Algebraic Expressions

Below listed, you can find solutions for Chapter 11 of CISCE Selina for Concise Mathematics Class 8 ICSE.

### Selina solutions for Concise Mathematics Class 8 ICSE Chapter 11 Algebraic Expressions Exercise 11 (A) [Page 137]

**Separate the constants and variables from the following :**

`-7,7+"x",7"x"+"yz",sqrt5,sqrt("xy"),(3"yz")/8,4.5"y"-3"x",`

8 −5, 8 − 5x, 8x −5y × p and 3y^{2}z ÷ 4x

Write the number of the term of the following polynomial.

5x^{2} + 3 x ax

Write the number of the term of the following polynomial.

ax ÷ 4 – 7

Write the number of the term of the following polynomial.

ax – by + y x z

Write the number of the term of the following polynomial.

23 + a x b ÷ 2

**Separate monomials, binomials, trinomials and polynomials from the following algebraic expressions :**

8 − 3x, xy^{2}, 3y^{2} − 5y + 8, 9x − 3x^{2} + 15x^{3} − 7,

3x × 5y, 3x ÷ 5y, 2y ÷ 7 + 3x − 7 and 4 − ax^{2} + bx + y

**Write the degree of a polynomial of the following:**

xy + 7z

**Write the degree of a polynomial of the following:**

x^{2} − 6x^{3} + 8

**Write the degree of a polynomial of the following:**

y − 6y^{2 }+ 5y^{8}

**Write the degree of a polynomial of the following:**

xyz − 3

**Write the degree of a polynomial of the following:**

xy + yz^{2} − zx^{3}

**Write the degree of a polynomial of the following:**

x^{5}y^{7} – 8x^{3}y^{8} + 10x^{4}y^{4}z^{4}

**Write the coefficient of :**

ab in 7abx

**Write the coefficient of :**

7a in 7abx

**Write the coefficient of :**

5x^{2} in 5x^{2} – 5x

**Write the coefficient of :**

8 in a^{2} – 8ax + a

**Write the coefficient of :**

4xy in x^{2} – 4xy + y^{2}

In `5/7`xy^{2}z^{3}, write the coefficient of 5

In `5/7`xy^{2}z^{3}, write the coefficient of `5/7`

In `5/7`xy^{2}z^{3}, write the coefficient of 5x

In `5/7`xy^{2}z^{3}, write the coefficient of xy^{2}

In `5/7`xy^{2}z^{3}, write the coefficient of z^{3}

In `5/7`xy^{2}z^{3}, write the coefficient of xz^{3}

In `5/7`xy^{2}z^{3}, write the coefficient of 5xy^{2}

In `5/7`xy^{2}z^{3}, write the coefficient of `1/7` yz

In `5/7`xy^{2}z^{3}, write the coefficient of z

In `5/7`xy^{2}z^{3}, write the coefficient of yz^{2}

In `5/7` xy^{2}z^{3}, write the coefficient of 5xyz

**In the polynomial, given below, separate the like terms :**

3xy, − 4yx^{2}, 2xy^{2}, 2.5x^{2}y, −8yx, −3.2y^{2}x and x^{2}y

**In the polynomial, given below, separate the like terms :**

y^{2}z^{3}, xy^{2}z^{3}, −5x^{2}yz, −4y^{2}z^{3}, −8xz^{3}y^{2}, 3x^{2}yz and 2z^{3}y^{2}

### Selina solutions for Concise Mathematics Class 8 ICSE Chapter 11 Algebraic Expressions Exercise 11 (B) [Page 140]

**Evaluate :**

−7x^{2} + 18x^{2} + 3x^{2 }− 5x^{2}

**Evaluate :**

b^{2}y − 9b^{2}y + 2b^{2}y − 5b^{2}y

**Evaluate :**

abx − 15abx − 10abx + 32abx

**Evaluate :**

7x − 9y + 3 − 3x − 5y + 8

**Evaluate :**

3x^{2} + 5xy − 4y^{2} + x^{2} − 8xy − 5y^{2}

**Add :** 5a + 3b, a − 2b, 3a + 5b

**Add :** 8x − 3y + 7z, −4x + 5y − 4z, −x − y − 2z

**Add :** 3b − 7c + 10, 5c − 2b − 15, 15 + 12c + b

**Add :** a − 3b + 3; 2a + 5 − 3c; 6c − 15 + 6b

**Add :** 13ab − 9cd − xy, 5xy, 15cd − 7ab, 6xy − 3cd

**Add :** x^{3} − x^{2}y + 5xy^{2} + y^{3}, - x^{3} − 9xy^{2} + y^{3}, 3x^{2}y + 9xy^{2}

Find the total savings of a boy who saves ₹ (4x – 6y), ₹ (6x + 2y), ₹ (4y – x) and ₹ (y – 2x) for four consecutive weeks.

**Subtract :** 4xy^{2} from 3xy^{2}

**Subtract :** −2x^{2}y + 3xy^{2 }from 8x^{2}y

**Subtract :** 3a − 5b + c + 2d from 7a − 3b + c − 2d

**Subtract :** x^{3} − 4x − 1 from 3x^{3} − x^{2} + 6

**Subtract :** 6a + 3 from a^{3} − 3a^{2} + 4a + 1

**Subtract :** cab − 4cad − cbd from 3abc + 5bcd − cda

**Subtract :** a^{2 }+ ab + b^{2} from 4a^{2} − 3ab + 2b^{2}

Take away – 3x^{3} + 4x^{2} – 5x+ 6 from 3x^{3} – 4x^{2} + 5x – 6

Take m^{2} + m + 4 from −m^{2} + 3m + 6 and the result from m^{2} + m + 1.

Subtract the sum of 5y^{2} + y – 3 and y^{2} – 3y + 7 from 6y^{2} + y – 2.

What must be added to x^{4} – x^{3} + x^{2} + x + 3 to obtain x^{4} + x^{2} – 1 ?

How much more than 2x^{2} + 4xy + 2y^{2} is 5x^{2} + 10xy – y^{2} ?

How much less 2a^{2} + 1 is than 3a^{2} – 6 ?

If x = 6a + 86 + 9c ; y = 2b – 3a – 6c and z = c – b + 3a ; find :**(i)** x + y + z**(ii)** x – y + z**(iii)** 2x – y – 3z**(iv) **3y – 2z – 5x

The sides of a triangle are x^{2} – 3xy + 8, 4x^{2} + 5xy – 3 and 6 – 3x^{2} + 4xy. Find its perimeter.

The perimeter of a triangle is 8y^{2} – 9y + 4 and its two sides are 3y^{2} – 5y and 4y^{2} + 12. Find its third side.

The two adjacent sides of a rectangle are 2x^{2} – 5xy + 3z^{2} and 4xy – x^{2} – z^{2}. Find its perimeter.

What must be subtracted from 19x^{4} + 2x^{3} + 30x – 37 to get 8x^{4} + 22x^{3} – 7x – 60 ?

How much smaller is 15x – 18y + 19z than 22x – 20y – 13z + 26 ?

How much bigger is 5x^{2}y^{2} – 18xy^{2} – 10x^{2}y than –5x^{2} + 6x^{2}y – 7xy?

### Selina solutions for Concise Mathematics Class 8 ICSE Chapter 11 Algebraic Expressions Exercise 11 (C) [Page 143]

**Multiply :** 8ab^{2} by − 4a^{3}b^{4}

**Multiply:** `2/3"ab"` by `-1/4 "a"^2"b"`

**Multiply:** −5cd^{2} by − 5cd^{2}

**Multiply:** 4a and 6a + 7

**Multiply:** −8x and 4 − 2x − x^{2}

**Multiply:** 2a^{2} − 5a − 4 and −3a

**Multiply:** x + 4 by x − 5

**Multiply: **5a − 1 by 7a − 3

**Multiply: **12a + 5b by 7a − b

**Multiply:** x^{2}+ x + 1 by 1 − x

**Multiply:** 2m^{2} − 3m − 1 and 4m^{2} − m − 1

**Multiply:** a^{2}, ab and b^{2}

**Multiply:** abx, −3a^{2}x and 7b^{2}x^{3}

**Multiply:** −3bx, −5xy and −7b^{3}y^{2}

**Multiply:** `-3/2"x"^5"y"^3` and `4/9"a"^2"x"3"y"`

**Multiply:** `-2/3"a"^7"b"^2` and `-9/4"a""b"^5`

**Multiply:** `2"a"^3-3"a"^2"b"` and `-1/2"ab"^2`

**Multiply:** `2"x"+1/2"y"` and `2"x"-1/2"y"`

**Multiply:** 5x^{2 }- 8xy + 6y^{2} - 3by - 3xy

**Multiply:** `3-2/3 "xy"+5/7 "xy"^2-16/21 "x"^2"y"` by `− 21"x"^2"y"^2`

**Multiply:** 6x^{3} − 5x + 10 by 4 − 3x^{2}

**Multiply: **2y − 4y^{3} + 6y^{5} by y^{2} + y − 3

**Multiply:** 5p^{2 }+ 25pq + 4q^{2} by 2p^{2} − 2pq +3q^{2}

**Simplify : **(7x – 8) (3x + 2)

**Simplify : **(px – q) (px + q)

**Simplify : **(5a + 5b – c) (2b – 3c)

**Simplify : **(4x – 5y) (5x – 4y)

**Simplify : **(3y + 4z) (3y – 4z) + (2y + 7z) (y + z)

The adjacent sides of a rectangle are x^{2} – 4xy + 7y^{2} and x^{3} – 5xy^{2}. Find its area.

The base and the altitude of a triangle are (3x – 4y) and (6x + 5y) respectively. Find its area.

Multiply -4xy^{3} and 6x^{2}y and verify your result for x = 2 and y= 1.

Find the value of (3x^{3}) × (-5xy^{2}) × (2x^{2}yz^{3}) for x = 1, y = 2 and z = 3.

Evaluate (3x^{4}y^{2}) (2x^{2}y^{3}) for x = 1 and y = 2.

Evaluate (x^{5}) × (3x^{2}) × (-2x) for x = 1.

If x = 2 and y = 1; find the value of (−4x^{2}y^{3}) × (−5x^{2}y^{5}).

**Evaluate: **(3x – 2)(x + 5) for x = 2.

**Evaluate: **(2x – 5y)(2x + 3y) for x = 2 and y = 3.

**Evaluate: **xz (x^{2} + y^{2}) for x = 2, y = 1 and z= 1.

**Evaluate: **x(x – 5) + 2 for x = 1.

**Evaluate: **xy^{2}(x – 5y) + 1 for x = 2 and y = 1.

**Evaluate: **2x(3x – 5) – 5(x – 2) – 18 for x = 2.

**Multiply and then verify :**

−3x^{2}y^{2} and (x – 2y) for x = 1 and y = 2.

**Multiply:** 2x^{2} – 4x + 5 by x^{2} + 3x – 7

**Multiply:** (ab – 1) (3 – 2ab)

**Simplify : **(5 – x) (6 – 5x) (2 -x).

### Selina solutions for Concise Mathematics Class 8 ICSE Chapter 11 Algebraic Expressions Exercise 11 (D) [Pages 145 - 146]

**Divide:** −70a^{3} by 14a^{2}

**Divide:** 24x^{3}y^{3} by −8y^{2}

**Divide:** 15a^{4}b by −5a^{3}b

**Divide:** −24x^{4}d^{3} by −2x^{2}d^{5}

**Divide:** 63a^{4}b^{5}c^{6} by −9a^{2}b^{4}c^{3}

**Divide:** 8x − 10y + 6c by 2

**Divide:** 15a^{3}b^{4} − 10a^{4}b^{3} − 25a^{3}b^{6} by −5a^{3}b^{2}

**Divide:** −14x^{6}y^{3 }− 21x^{4}y^{5} + 7x^{5}y^{4} by 7x^{2}y^{2}

**Divide:** a^{2} + 7a + 12 by a + 4

**Divide:** x^{2} + 3x − 54 by x − 6

**Divide:** 12x^{2} + 7xy − 12y^{2} by 3x + 4y

**Divide:** x^{6} − 8 by x^{2} − 2

**Divide:** 6x^{3 }− 13x^{2} − 13x + 30 by 2x^{2} − x − 6

**Divide:** 4a^{2} + 12ab + 9b^{2} − 25c^{2} by 2a + 3b + 5c

**Divide: **16 + 8x + x^{6} − 8x^{3} − 2x^{4} + x^{2} by x + 4 − x^{3}

**Find the quotient and the remainder when :**a

^{3 }− 5a

^{2}+ 8a + 15 is divided by a + 1. verify your answer.

**Find the quotient and the remainder when :**

3x^{4} + 6x^{3} − 6x^{2} + 2x − 7 is divided by x − 3. verify your answer.

**Find the quotient and the remainder when :**

6x^{2} + x − 15 is divided by 3x + 5. verify your answer.

The area of a rectangle is x^{3} – 8x + 7 and one of its sides is x – 1. Find the length of the adjacent side.

The product of two numbers-is 16x^{4} – 1. If one number is 2x – 1, find the other.

Divide x^{6} – y^{6} by the product of x^{2} + xy + y^{2} and x – y.

### Selina solutions for Concise Mathematics Class 8 ICSE Chapter 11 Algebraic Expressions Exercise 11 (E) [Page 147]

**Simplify : **a^{2} − 2a + {5a^{2} − (3a - 4a^{2})}

**Simplify : **`"x" − "y" − {"x" − "y" − ("x" + "y") −overline("x"-"y")}`

**Simplify : **−3 (1 − x^{2}) − 2{x^{2} − (3 − 2x^{2})}

**Simplify : **`2{"m"-3("n"+overline("m"-2"n"))}`

**Simplify : **`3"x"-[3"x"-{3"x"-(3"x"-overline(3"x"-"y"))}]`

**Simplify : **`"p"^2"x"-2{"px"-3"x"("x"^2-overline(3"a"-"x"^2))}`

**Simplify : **`2[6 + 4 {"m"-6(7 - overline("n"+"p")) + "q"}]`

**Simplify : **`"a"-["a"-overline("b+a") - {"a"-("a"- overline("b"-"a"))}]`

**Simplify : **`3"x"-[4"x"-overline(3"x"-5"y")-3 {2"x"-(3"x"-overline(2"x"-3"y"))}]`

**Simplify: **a^{5} ÷ a^{3 }+ 3a × 2a

**Simplify: **x^{5} ÷ (x^{2} × y^{2}) × y^{3}

**Simplify: **(x^{5} ÷ x^{2}) × y^{2 }× y^{3}

**Simplify: **(y^{3} − 5y^{2}) ÷ y × (y − 1)

**Simplify: **`3"a"xx[8"b" ÷ 4-6{"a"-(5"a"-overline(3"b"-2"a"))} ]`

**Simplify: **7x + 4 {x^{2} ÷ (5x ÷ 10)} − 3 {2 − x^{3} ÷ (3x^{2} ÷ x)}

## Solutions for Chapter 11: Algebraic Expressions

## Selina solutions for Concise Mathematics Class 8 ICSE chapter 11 - Algebraic Expressions

Shaalaa.com has the CISCE Mathematics Concise Mathematics Class 8 ICSE CISCE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Selina solutions for Mathematics Concise Mathematics Class 8 ICSE CISCE 11 (Algebraic Expressions) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Selina textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Concise Mathematics Class 8 ICSE chapter 11 Algebraic Expressions are Degree of Polynomial, Product , Factor and Coefficient, Combining like Terms, Multiplying Monomial by Monomials, Multiplying a Polynomial by a Polynomial, Simplification of Expressions, Multiplying a Monomial by a Polynomial, Dividing a Polynomial by a Monomial, Dividing a Polynomial by a Polynomial, Dividing a Monomial by a Monomial, Like and Unlike Terms, Algebraic Expressions.

Using Selina Concise Mathematics Class 8 ICSE solutions Algebraic Expressions exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Selina Solutions are essential questions that can be asked in the final exam. Maximum CISCE Concise Mathematics Class 8 ICSE students prefer Selina Textbook Solutions to score more in exams.

Get the free view of Chapter 11, Algebraic Expressions Concise Mathematics Class 8 ICSE additional questions for Mathematics Concise Mathematics Class 8 ICSE CISCE, and you can use Shaalaa.com to keep it handy for your exam preparation.