Online Mock Tests
Chapters
Chapter 2: Banking (Recurring Deposit Account)
Chapter 3: Shares and Dividend
Chapter 4: Linear Inequations (In one variable)
Chapter 5: Quadratic Equations
Chapter 6: Solving (simple) Problems (Based on Quadratic Equations)
Chapter 7: Ratio and Proportion (Including Properties and Uses)
Chapter 8: Remainder and Factor Theorems
Chapter 9: Matrices
Chapter 10: Arithmetic Progression
Chapter 11: Geometric Progression
Chapter 12: Reflection
Chapter 13: Section and Mid-Point Formula
Chapter 14: Equation of a Line
Chapter 15: Similarity (With Applications to Maps and Models)
Chapter 16: Loci (Locus and Its Constructions)
Chapter 17: Circles
Chapter 18: Tangents and Intersecting Chords
Chapter 19: Constructions (Circles)
Chapter 20: Cylinder, Cone and Sphere
Chapter 21: Trigonometrical Identities
Chapter 22: Height and Distances
Chapter 23: Graphical Representation
Chapter 24: Measure of Central Tendency(Mean, Median, Quartiles and Mode)
Chapter 25: Probability

Chapter 9: Matrices
Selina solutions for Concise Maths Class 10 ICSE Chapter 9 Matrices Exercise 9 (A) [Page 120]
State, whether the following statement is true or false. If false, give a reason.
If A and B are two matrices of orders 3 × 2 and 2 × 3 respectively; then their sum A + B is possible.
True
False
State, whether the following statements are true or false. If false, give a reason.
The matrices A2 × 3 and B2 × 3 are conformable for subtraction.
True
False
State, whether the following statement is true or false. If false, give a reason.
Transpose of a 2 × 1 matrix is a 2 × 1 matrix.
True
False
State, whether the following statements are true or false. If false, give a reason.
Transpose of a square matrix is a square matrix.
True
False
State, whether the following statements are true or false. If false, give a reason.
A column matrix has many columns and one row.
True
False
Given `[(x, y + 2),(3, z - 1)] = [(3,1),(3,2)]`, Find x, y, z
Solve for a, b and c if `[(-4, a + 5),(3, 2)] = [(b + 4, 2),(3, c- 1)]`
Solve for a, b and c if `[(a, a- b),(b + c, 0)] = [(3, -1),(2,0)]`
If A = [8 -3] and B = [4 -5]; find A + B
If A = [8 -3] and B = [4 -5]; find B - A
If `A = [2/5]`,` B = [1/4]` and `C = [6/-2]` Find B + C
If A = `[2/5], B = [1/ 4] and c = [6/-2] `Find A - C
if `A = [(2),(5)], B = [(1),(4)] and C = [(6),(-2)]` Find A + B - C
If A = `[2/5], B = [1/4] and C =[6/-2], `find :
A – B +C
Wherever possible write of the following as a single matrix
`[(1, 2),(3, 4)] +[(-1,-2), (1,-7)]`
Wherever possible write of the following as a single matrix
`[(2,3,4),(5,6,7)] - [(0,2,3),(6,-1,0)]`
Wherever possible write of the following as a single matrix
`[(0,1,2),(4,6,7)] + [(3,4),(6,8)]`
Find x and y from the given equations:
`[(5,2),(-1, y - 1)] - [(1, x -1),(2, -3)] = [(4,7),(-3,2)]`
Find x and y from the given equations:
[-8 x] + [y -2] = [-3 2]
Given M = `[(5, -3),(-2, 4)]` Find its transpose matrix `M^t`. If possible find `M + M^t`
Given `M = [(5, -3),(-2, 4)]` find its transpose matrix `M^t` if possible find `M^t - M`
Write the additive inverse of matrices A, B and C Where A = [6, -5]; B = `[(-2, 0),(4, -1)] and C = [(-7), (4)]`
Given A = [2 -3], B = [0 2] and C = [-1 4]; Find the matrix X in the following:
X + B = C - A
Given A = [2 -3], B = [0 2] and C = [-1 4]; Find the matrx X in the following
A - X = B + C
Given `A = [(-1, 0),(2, -4)] and B = [(3, -3),(-2, 0)]` Find the matrix X in the following
A + X = B
Given A` = [(-1, 0),(2,0)]` and B = `[(3, -3),(-2, 0)]` find the matrix X in of the following
A- X = B
Given `A = [(-1, 0),(2, -4)]` and `B = [(3, -3),(-2, 0)]` Find the matrix X in following
X - B = A
Selina solutions for Concise Maths Class 10 ICSE Chapter 9 Matrices Exercise 9 (B) [Pages 121 - 122]
Evaluate 3[5 -2]
Evaluate `7[(-1, 2),(0, 1)]`
Evaluate : `2[(-1 0)/(2 -3)] +[(3 3)/(5 0)]`
Evaluate `6[(3), (-2)] -2[(-8), (1)]`
Find x and y if 3[4 x] + 2[y -3] = [10 0]
Find x and y if `x[(-1), (2)] - 4[(-2), (y)] = [(7),(-8)]`
Given `A = 2[(2, 1),(3, 0)],-3[(1, 1),(5, 2)] + [(-3, -1),(0,0)]` Find 2A - 3B + C
Given A = `2[(2,1),(3,0)]-3[(1,1),(5,2)]+[(-3, -1),(0,0)]`: find A + 2C – B
If `[(4, -2),(4, 0)] + 3A = [(-2,-2),(1, -3)]` Find A
Given `A = [(1, 4),(2, 3)] and B = |(-4-1),(-3 -2)|`
Find the matrix 2A + B
Given `A = [(1 4),(2 3)] and B = [(-4 -1),(-3 -2)]` Find the matrix C such that C + B = `[(0, 0),(0,0)]`
If `2[(3, x),(0, 1)] + 3[(1, 3),(y, 2)] = [(z, -7),(15, 8)]` Find the values of x, y and z.
Given `A = [(-3, 6),(0, -9)]` and `A^t` its transpose matrix. Find `2A + 3A^t`
Given `A = [(-3, 6),(0, -9)]` and `A^t` is its transpose matrix Find `2A^t - 3A`
Given `A = [(-3, 6),(0, -9)]` and `A^t` is its transpose matrix. Find `1/2 A - 1/3 A^t`
Given `A = [(-3, 6),(0, -9)]` and `A^t` is its transpose matrix Find `A^t - 1/3 A`
Given `A = [(1, 1),(-2, 0)]` and `B = [(2, -1),(1, 1)]`
Solve for matrix X:
X + 2A = B
Given `A = [(1,1),(-2, 0)]` and `B = [(2, -1), (1, 1)]` Solve for matrix X
3X + B + 2A = O
Given A = `[(1,1),(-2, 0)]` and `B = [(2, -1),(1, 1)]` Solve for matrix X:
3A - 2X = X - 2B
If `M = [(0), (1)]` and `N = [(1),(0)]` show that `3M + 5N = [5/3]`
If I is the unit matrix of order 2 x 2 Find the matrix M such that `M - 2I = 3[(-1, 0),(4, 1)]`
If I is the unit matrix of order 2 x 2. Find the matrix M such that
`5M + 3I = 4[(2, -5),(0, -3)]`
If `[(1, 4),(-2, 3)] + 2M = 3[(3, 2),(0, -3)]`, find the matrix M
Selina solutions for Concise Maths Class 10 ICSE Chapter 9 Matrices Exercise 9 (C) [Pages 129 - 131]
Evaluate if possible `[(3 ,2)][(2),(0)]`
Evaluate if possible `[(1, -2)][(-2, 3),(-1, 4)]`
Evaluate if possible `[(6, 4),(3, -1)][(-1),(3)]`
Evaluate if possible `[(6, 4),(3, 1)][-1, 3]`
If `A = [(0, 2),(5, -2)]`, `B= [(1, -1),(3, 2)]` and I is a unit matrix of order 2 x 2 find AB
If `A = [(0, 2),(5, -2)], B = [(1, -1),(3, 2)]` and I is a unit matrix of order 2 x 2 findb BA
If `A = [(0, 2),(5, -2)]`, B =` [(1, -1),(3, 2)]` and I is a unit matrix of order 2 x 2. Find AI
If `A= [(0, 2),(5, -2)], B = [(1, -1),(3, 2)]` and I is unit matrix of order 2 x 2 Find IB
If `A = [(0, 2),(5, -2)], B = [(1, -1),(3, 2)]` and I is a unit matrix of order 2 x 2 find `A^2`
If `A = [(0, 2),(5, -2)], B = [(1, -1),(3, 2)]` and I is unit matrix of order 2 x 2 find `B^2A`
If A = `[(3,x), (0,1)]` and B = `[(9,16), (0,-y)]`, find x and y when A2 = B
Find x and y if `[(4, 3x),(x, -2)][(5), (1)] = [(y),(8)]`
Find x and y if `[(x, 0),(-3, 1)][(1,1),(0, y)] = [(2,2),(-3, -2)]`
If `A = [(1, 3),(2, 4)], B = [(1, 2),(4, 3)] and C = [(4, 3),(1, 2)]` find
1) (AB)C
2) A(BC)
Is A(BC) = (AB)C?
Given `A = [(0, 4, 6),(3, 0, -1)]` and B = `[(0, 1),(-1, 2),(-5, -6)]` find if possible AB
Given `A = [(0, 4, 6),(3, 0, -1)]` and `B = [(0, 1),(-1, 2),(-5, -6)]` find if possible BA
Given `A = [(0, 4, 6),(3, 0, 1)][(0, 1),(-1, 2),(-5, -6)]` Find if possible `A^2`
Let A = `[(2,1), (0,-2)], B = [(4,1), (-3,-2)] and C = [(-3,2), (-1,4)]` FindA2 + AC -5B
If `M =[(1, 2),(2, 1)]` and I is a unit matrix of the same order as that of M Show that `M^2 = 2M + 3I`
If `A = [(a, 0),(0, 2)]`, B = `[(0, -b),(1, 0)], M = [(1, -1),(1, 1)]` and `BA = M^2` find the values of a and b.
Given `A = [(4, 1),(2,3)]` and `B = [(1, 0),(-2, 1)]` Find A - B
Given `A = [(4, 1), (2, 3)]` and `B = [(1, 0),(-2, 1)]` Find `A^2`
Given `A = [(4, 1),(2, 3)]` and `B = [(1, 0),(-2, 1)]` Find AB
Given `A = [(4, 1),(2, 3)]` and `B = [(1, 0),(-2, 1)]` Find `A^2 - AB + 2B`
If `A = [(1, 4), (1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `(A + B)^2`
If `A = [(1, 4),(1, -3)]` and `B = [(1, 2),(-1, -1)]` Find `A^2 + B^2`
If A= [(1, 4), (1, -3)] and `B = [(1, 2),(-1, -1)]` Find : Is `(A + B)^2 = A^2 + B^2?`
Find the matrix A, If B =`[(2,1),(0,1)] and B^2 = B+1/2A`
If `A = [(-1, 1),(a, b)]` and `A^2 = I`; Find a and b
If `A = [(2, 1),(0, 0)] , B = [(2, 3),(4, 1)] and C = [(1, 4),(0, 2)]` then show that A(B + C) = AB + AC
If` A = [(2, 1),(0,0)], B = [(2, 3),(4, 1)] and C = [(1, 4),(0, 2)]` then show that (B - A)C = BC - AC
If `A = [(1, 4),(2, 1)], B = [(-3, 2),(4, 0)]] and C = [(1, 0),(0, 2)]` Simplify `A^2 + BC`
Solve for x and y: `[(2, 5),(5, 2)][(x),(y)] = [(-7),(14)]`
Solve for x and y :
`[x+y x-4] [(-1,-2),(2,2)] = [-7 -11]`
Solve for x and y `[(-2,0), (3,1)][(-1), (2x)] +3[(-2), (1)] =2[(y), (3)]`
In the given case below find
a) The order of matrix M.
b) The matrix M
`M xx [(1,1),(0, 2)] = [1, 2]`
In the given case below, Find :
a) The order of matrix M
b) The matrix M
`[(1, 4),(2, 1)] xx M = [(13), (5)]`
If `A = [(2, x),(0, 1)] and B = [(4, 36),(0, 1)]`. Find the vlaue of x given that `A^2 = B`
If A = `[(3,7), (2,4)], B = [(0,2), (5,3)] and C = [(1,-5), (-4,6)]` Find AB - 5C
If A and B are any two 2 x 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
Given `A = [(3, 0),(0, 4)]`, `B = [(a, b),(0, c)]` and that AB = A + B. Find the values of a, b and c
If `P = [(1, 2),(2, -1)] and Q = [(1, 0),(2, 1)]` then compute:
1) `P^2 - Q^2`
2) (P + Q)(P - Q)
`Is (P + Q)(P - Q) = P^2 - Q^2` true for matrix algebra?
Given the matrices `A = [(2, 1),(4, 2)], B = [(3, 4),(-1, -2)] and C = [(-3, 1),(0, -2)]` Find
1) ABC
2) ACB
State whether ABC = ACB.
If `A = [(1, 2),(3, 4)]`, `B = [(6, 1), (1, 1)]` and `C= [(-2, -3),(0, 1)]` Find the following and state of they are equal CA + B
If `A = [(1, 2),(3, 4)], B = [(6, 1), (1, 1)] and C = [(-2, -3),(0, 1)]` find of the following and state if they are equal A + CB
if `A = [(2, 1),(1, 3)]` and `B = [(3),(-11)]` Fidn the matrix X such that AX = B
If `A =[(4, 2),(1,1)]` Find (A - 2I)(A - 3I)
If `A = [(2, 1, -1),(0, 1, -2)]` Find `A^t. A` Where `A^t.A` is the transpose of matrix A
If `A = [(2,1,-1),(0, 1,-2)]` find `A.A^t` where `A^t` is the transpose of matrix A
if M = `[(4,1),(-1,2)]` show that `6m - m^2 = 9I` where I is 2 x 2 unit matrix.
If `P = [(2,6),(3,9)]` and `Q = [(3,x),(y, 2)]` find x and y such that PQ = null matrix
Evaluate without using tables:
`[(2 cos 60^@ - 2 sin 30^@),(-tan 45^@ , cos 0^@)][(cot 45^@,cosec 30^@),(sec 60^@,sin 90^@)]`
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 x 2
A + B = B + A
True
False
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 x 2.
A – B = B – A
True
False
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 x 2.
(B. C). A = B. (C. A)
True
False
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 x 2.
(A + B). C = A. C + B. C
True
False
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 x 2.
A. (B - C) = A. B - A. C
True
False
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 x 2.
(A – B). C = A. C – B. C
True
False
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 x 2.
A² – B² = (A + B) (A – B)
True
False
State, with reason, whether the following are true or false. A, B and C are matrices of order 2 x 2.
(A – B)² = A² – 2A. B + B²
True
False
Selina solutions for Concise Maths Class 10 ICSE Chapter 9 Matrices Exercise 9 (D) [Pages 131 - 132]
Find x and y, if `((3,-2),(-1,4))((2x),(1)) + 2((-4),(5)) = 4((2),(y))`
Find x and y if `[3x 8][(1,4),(3,7)] - 3[(2,-7)] = 5[(3, 2y)]`
if `[x,y][(x),(y)]` = [25] and `[-x, y][(2x),(y)] = [-2]` find x and y if `x, y ε W` (whole numbers)
If `[x, y][(x),(y)] = [25]` and `[(-x, y)][(2x),(y)] = [-2]` find x and y if `x, y ε Z` (integer)
Given `[(2, 1),(-3, 4)] X = [(7), (6)]` write the order of matrix x
Given `[(2, 1),(-3, 4)] x = [(7),(6)]` Write the matrix x
Evaluate `[(cos 45°, sin 30°),(sqrt2 cos 0°, sin 0°)][(sin 45°, cos 90°), (sin 90°, cot 45°)]`
If `A = [(0, -1),(4, -3)]`, B = `[(-5),(6)]` and 3A x M = 2B; Find matrix M
If `[(a, 3),(4, 1)] + [(2, b),(1, -2)] - [(1,1),(-2, c)] = [(5, 0),(7, 3)]`, Find the values of a, b and c
If `A = [(1, 2),(2,1)]` and `B = [(2, 1),(1, 2)]` Find A(BA)
If `A = [(1, 2),(2, 1)]` and `B= [(2,1),(1, 2)]` Find (AB).B
Find x and y if `[(x, 3x),(y, 4y)][(2), (1)] = [(5),(12)]`
If matrix `X = [(-3, 4),(2, -3)][(2),(-2)]` and 2X - 3Y = `[(10),(-8)]`; Find the matrix X and Y
Given `A = [(2, -1),(2, 0)] B = [(-3, 2),(4, 0)]` and `C = [(1, 0),(0, 2)]` Find the matrix X such that A + X = 2B = C
Find the value of x, given that `A^2 = B`
`A = [(2, 12),(0, 1)] and B = [(4, x),(0, 1)]`
If `A = [(2, 5),(1, 3)]`, `B = [(4, -2),(-1, 3)]` and I is Identity matrix of same order and `A^t` is the transpose of matrix A find `A^t.B + BI`
Given A = `[(2,-6),(2,0)], "B" = [(-3,2),(4,0)], "C" = [(4,0),(0,2)]` Find the matrix X such that A + 2X = 2B + C.
Let `A = [(4, -2),(6, -3)], B = [(0, 2),(1, -1)] and C =[(-2, 3),(1, -1)]` Find `A^2 + A +BC`
Let `A = [(1, 0),(2, 1)], B = [(2, 3),(-1, 0)]`. Find `A^2 + AB + B^2`
If `A = [(3, a),(-4, 8)], B = [(c, 4),(-3, 0)], C = [(-1, 4),(3, b)]` and 3A - 2C = 6B, find the values of a, b , c.
Given `A = [(p, 0),(0, 2)], B = [(0, -q),(1, 0)] C = [(2, -2),(2, 2)]` and `BA = C^2` Find the values of p and q
Given `A = [(3,-2),(-1,4)] B = [(6),(1)], C = [(-4),(5)] and D = [(2),(2)]` Find AB + 2C - 4D
Evaluate:
`[(4sin 30^@, 2cos 60^@),(sin 90^@, 2 cos 0^@)][(4,5),(5,4)]`
if A = `[(3,1),(-1,2)]` and `I = [(1,0),(0,1)]`, find `A^2 - 5A + 7I`
Given A = `[(2,0), (-1,7)] and 1 = [(1,0), (0,1)]` and A2 = 9A +mI. Find m
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Write the order of matrix X.
Given matrix A = `[(4sin30^@,cos0^@), (cos0^@,4sin30^@)] and B = [(4), (5)]` If AX = B.
Find the matrix 'X'
If A = `[(1,3), (3,4)]` B = `[(-2,1), (-3,2)]` and `A^2 - 5B^2 = 5C` Find the matrix C where C is a 2 by 2 matrix.
Given matrix B =`[(1,1), (8,3)]` Find the matrix X if, X = B2 - 4B. Hence, solve for a and b given X`[(a), (b)] = [(5), (50)]`
Chapter 9: Matrices

Selina solutions for Concise Maths Class 10 ICSE chapter 9 - Matrices
Selina solutions for Concise Maths Class 10 ICSE chapter 9 (Matrices) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CISCE Concise Maths Class 10 ICSE solutions in a manner that help students grasp basic concepts better and faster.
Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. Selina textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.
Concepts covered in Concise Maths Class 10 ICSE chapter 9 Matrices are Introduction to Matrices, Addition and Subtraction of Matrices, Multiplication of Matrix, Matrices Examples.
Using Selina Class 10 solutions Matrices exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in Selina Solutions are important questions that can be asked in the final exam. Maximum students of CISCE Class 10 prefer Selina Textbook Solutions to score more in exam.
Get the free view of chapter 9 Matrices Class 10 extra questions for Concise Maths Class 10 ICSE and can use Shaalaa.com to keep it handy for your exam preparation