SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 chapter 6 - Trigonometry [Latest edition]

Chapters Chapter 6: Trigonometry

Q.1 (A)Q.1 (B)Q.2 (A)Q.2 (B)Q.3 (A)Q.3 (B)Q.4Q.5
Q.1 (A)

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 Chapter 6 Trigonometry Q.1 (A)

MCQ [1 Mark]

Q.1 (A) | Q 1

Choose the correct alternative:

cos θ . sec θ = ?

• 1

• 0

• 1/2

• sqrt(2)

Q.1 (A) | Q 2

Choose the correct alternative:

sec 60° = ?

• 1/2

• 2

• 2/sqrt(3)

• sqrt(3)

Q.1 (A) | Q 3

Choose the correct alternative:

1 + cot2θ = ?

• tan2θ

• sec2θ

• cosec2θ

• cos2θ

Q.1 (A) | Q 4

Choose the correct alternative:

cot θ . tan θ = ?

• 1

• 0

• 2

• sqrt(2)

Q.1 (A) | Q 5

Choose the correct alternative:

sec2θ – tan2θ = ?

• 0

• 1

• 2

• sqrt(2)

Q.1 (A) | Q 6

Choose the correct alternative:

sin2θ + sin2(90 – θ) = ?

• 0

• 1

• 2

• sqrt(2)

Q.1 (A) | Q 7

Choose the correct alternative:

(1 + cot^2"A")/(1 + tan^2"A") = ?

• tan2A

• sec2A

• cosec2A

• cot2A

Q.1 (A) | Q 8

Choose the correct alternative:

sin θ = 1/2, sin θ = ?

• 30°

• 45°

• 60°

• 90°

Q.1 (A) | Q 9

Choose the correct alternative:

tan (90 – θ) = ?

• sin θ

• cos θ

• cot θ

• tan θ

Q.1 (A) | Q 10

Choose the correct alternative:

cos 45° = ?

• sin 45°

• sec 45°

• cot 45°

• tan 45°

Q.1 (A) | Q 11

Choose the correct alternative:

If sin θ = 3/5, then cos θ = ?

• 5/3

• 3/5

• 4/5

• 5/4

Q.1 (A) | Q 12

Choose the correct alternative:

Which is not correct formula?

• 1 + tan2θ = sec2θ

• 1 + sec2θ = tan2θ

• cosec2θ − cot2θ = 1

• sin2θ + cos2θ = 1

Q.1 (A) | Q 13

Choose the correct alternative:

If ∠A = 30°, then tan 2A = ?

• 1

• 0

• 1/sqrt(3)

• sqrt(3)

Q.1 (B)

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 Chapter 6 Trigonometry Q.1 (B)

Solve the following questions: [ 1 Mark]

Q.1 (B) | Q 1

(1 - tan^2 45^circ)/(1 + tan^2 45^circ) = ?

Q.1 (B) | Q 2

If tan θ = 13/12, then cot θ = ?

Q.1 (B) | Q 3

Prove that "cosec"  θ xx sqrt(1 - cos^2theta) = 1

Q.1 (B) | Q 4

If tan θ = 1, then sin θ . cos θ = ?

Q.1 (B) | Q 5

If 2 sin θ = 3 cos θ, then tan θ = ?

Q.1 (B) | Q 6

If cot( 90 – A ) = 1, then ∠A = ?

Q.1 (B) | Q 7

If 1 – cos2θ = 1/4, then θ = ?

Q.1 (B) | Q 8

Prove that (cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")

Q.1 (B) | Q 9

If tan θ × A = sin θ, then A = ?

Q.1 (B) | Q 10

(sec θ + tan θ) . (sec θ – tan θ) = ?

Q.1 (B) | Q 11

(sin 75^circ)/(cos 15^circ) = ?

Q.2 (A)

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 Chapter 6 Trigonometry Q.2 (A)

Complete the following activities [2 Marks]

Q.2 (A) | Q 1

Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity: L.H.S = square

= cos^2theta xx square    .....1 + tan^2theta = square]

= (cos theta xx square)^2

= 12

= 1

= R.H.S

Q.2 (A) | Q 2

5/(sin^2theta) - 5cot^2theta, complete the activity given below.

Activity: 5/(sin^2theta) - 5cot^2theta = square (1/(sin^2theta) - cot^2theta)

= 5(square - cot^2theta)   ......[1/(sin^2theta) = square]

= 5(1)

= square

Q.2 (A) | Q 3

If sec θ + tan θ = sqrt(3), complete the activity to find the value of sec θ – tan θ

Activity: square = 1 + tan2θ    ......[Fundamental trigonometric identity]

square – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = square

sqrt(3)*(sectheta - tan theta) = 1

(sec θ – tan θ) = square

Q.2 (A) | Q 4

If tan θ = 9/40, complete the activity to find the value of sec θ.

Activity: sec2θ = 1 + square     ......[Fundamental trigonometric identity]

sec2θ = 1 + square^2

sec2θ = 1 + square

sec θ = square

Q.2 (B)

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 Chapter 6 Trigonometry Q.2 (B)

Solve the following questions [2 Marks]

Q.2 (B) | Q 1

If cos θ = 24/25, then sin θ = ?

Q.2 (B) | Q 2

Prove that (sin^2theta)/(cos theta) + cos theta = sec θ

Q.2 (B) | Q 3

Prove that 1/("cosec"  theta - cot theta) = cosec θ + cot θ

Q.2 (B) | Q 4

If cos(45° + x) = sin 30°, then x = ?

Q.2 (B) | Q 5

If tan θ + cot θ = 2, then tan2θ + cot2θ = ?

Q.2 (B) | Q 6

Prove that sec2θ + cosec2θ = sec2θ × cosec2θ

Q.2 (B) | Q 7

Prove that cot2θ × sec2θ = cot2θ + 1

Q.2 (B) | Q 8

If 3 sin θ = 4 cos θ, then sec θ = ?

Q.2 (B) | Q 9

If sin 3A = cos 6A, then ∠A = ?

Q.2 (B) | Q 10

Prove that sec2θ − cos2θ = tan2θ + sin2θ

Q.2 (B) | Q 11

Prove that "tan A"/"cot A" = (sec^2"A")/("cosec"^2"A")

Q.2 (B) | Q 12

Prove that (sintheta + tantheta)/cotheta = tan θ(1 + sec θ)

Q.2 (B) | Q 13

Prove that (cos^2theta)/(sintheta) + sintheta = cosec θ

Q.2 (B) | Q 14

Prove that costheta/(1 + sintheta) = (1 - sintheta)/(costheta)

Q.3 (A)

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 Chapter 6 Trigonometry Q.3 (A)

Complete the following activities [3 Marks]

Q.3 (A) | Q 1

sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity: L.H.S = square

= (sin2A + cos2A) (square)

= 1 (square)       .....[sin^2"A" + square = 1]

= square – cos2A    .....[sin2A = 1 – cos2A]

= square

= R.H.S

Q.3 (A) | Q 2

tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity: L.H.S = square

= square (1 - (sin^2theta)/(tan^2theta))

= tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))

= tan^2theta (1  (sin^2theta)/1 xx (cos^2theta)/square)

= tan^2theta (1 - square)

= tan^2theta xx square    .....[1 – cos2θ = sin2θ]

= R.H.S

Q.3 (A) | Q 3

If tan θ = 7/24, then to find value of cos θ complete the activity given below.

Activity: sec2θ = 1 + square    ......[Fundamental tri. identity]

sec2θ = 1 + square^2

sec2θ = 1 + square/576

sec2θ = square/576

sec θ = square

cos θ = square     .......[cos theta = 1/sectheta]

Q.3 (A) | Q 4

To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.

Activity: L.H.S = square

= square/sintheta + sintheta/costheta

= (cos^2theta + sin^2theta)/square

= 1/(sintheta*costheta)     ......[cos^2theta + sin^2theta = square]

= 1/sintheta xx 1/square

= square

= R.H.S

Q.3 (B)

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 Chapter 6 Trigonometry Q.3 (B)

Solve the following questions [3 Marks]

Q.3 (B) | Q 1

If sec θ = 41/40, then find values of sin θ, cot θ, cosec θ

Q.3 (B) | Q 2

If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ

Q.3 (B) | Q 3

Prove that (tan(90 - theta) + cot(90 - theta))/("cosec"  theta) = sec θ

Q.3 (B) | Q 4

Prove that cot2θ – tan2θ = cosec2θ – sec2θ

Q.3 (B) | Q 5

Prove that (1 + sintheta)/(1 - sin theta) = (sec θ + tan θ)2

Q.3 (B) | Q 6

Prove that sintheta/(sectheta+ 1) +sintheta/(sectheta - 1) = 2 cot θ

Q.3 (B) | Q 7

Prove that sec"A"/(tan "A" + cot "A") = sin A

Q.3 (B) | Q 8

Prove that (sintheta + "cosec"  theta)/sin theta = 2 + cot2θ

Q.3 (B) | Q 9

Prove that "cot A"/(1 - cot"A") + "tan A"/(1 - tan "A") = – 1

Q.3 (B) | Q 10

Prove that sqrt((1 + cos "A")/(1 - cos"A")) = cosec A + cot A

Q.3 (B) | Q 11

Prove that sin4A – cos4A = 1 – 2cos2A

Q.3 (B) | Q 12

Prove that sec2θ – cos2θ = tan2θ + sin2θ

Q.3 (B) | Q 13

Prove that cosec θ – cot θ = sin theta/(1 + cos theta)

Q.3 (B) | Q 14

In ∆ABC, cos C = 12/13 and BC = 24, then AC = ?

Q.3 (B) | Q 15

Prove that (1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")

Q.3 (B) | Q 16

If sin A = 3/5 then show that 4 tan A + 3 sin A = 6 cos A

Q.3 (B) | Q 17

Prove that (1 + sin "B")/"cos B" + "cos B"/(1 + sin "B") = 2 sec B

Q.4

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 Chapter 6 Trigonometry Q.4

Solve the following questions: [Challenging questions, 4 marks]

Q.4 | Q 1

Prove that sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A

Q.4 | Q 2

Prove that sec2A – cosec2A = (2sin^2"A" - 1)/(sin^2"A"*cos^2"A")

Q.4 | Q 3

Prove that (cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"

Q.4 | Q 4

Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ

Q.4 | Q 5

If cos A = (2sqrt("m"))/("m" + 1), then prove that cosec A = ("m" + 1)/("m" - 1)

Q.4 | Q 6

If sec A = x + 1/(4x), then show that sec A + tan A = 2x or 1/(2x)

Q.4 | Q 7

In ∆ABC, sqrt(2) AC = BC, sin A = 1, sin2A + sin2B + sin2C = 2, then ∠A = ? , ∠B = ?, ∠C = ?

Q.4 | Q 8

Prove that sin6A + cos6A = 1 – 3sin2A . cos2A

Q.4 | Q 9

Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0

Q.4 | Q 10

Prove that "cot A"/(1 - tan "A") + "tan A"/(1 - cot"A") = 1 + tan A + cot A = sec A . cosec A + 1

Q.5

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 Chapter 6 Trigonometry Q.5

Solve the following questions: [Creative questions, 3 Marks]

Q.5 | Q 1

If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3

Q.5 | Q 2

If cos A + cos2A = 1, then sin2A + sin4 A = ?

Q.5 | Q 3

If cosec A – sin A = p and sec A – cos A = q, then prove that ("p"^2"q")^(2/3) + ("pq"^2)^(2/3) = 1

Q.5 | Q 4

Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = sqrt(3)

Q.5 | Q 5

If sin θ + cos θ = sqrt(3), then show that tan θ + cot θ = 1

Q.5 | Q 6

If tan θ – sin2θ = cos2θ, then show that sin2 θ = 1/2

Q.5 | Q 7

Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B

Chapter 6: Trigonometry

Q.1 (A)Q.1 (B)Q.2 (A)Q.2 (B)Q.3 (A)Q.3 (B)Q.4Q.5 SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 chapter 6 - Trigonometry

SCERT Maharashtra Question Bank solutions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 chapter 6 (Trigonometry) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the Maharashtra State Board 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 solutions in a manner that help students grasp basic concepts better and faster.

Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. SCERT Maharashtra Question Bank textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 chapter 6 Trigonometry are Trigonometry Ratio of Zero Degree and Negative Angles, Application of Trigonometry, Heights and Distances, Trigonometric Ratios of Complementary Angles, Trigonometric Identities, Trigonometric Ratios in Terms of Coordinates of Point, Angles in Standard Position.

Using SCERT Maharashtra Question Bank 10th Standard Board Exam solutions Trigonometry exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in SCERT Maharashtra Question Bank Solutions are important questions that can be asked in the final exam. Maximum students of Maharashtra State Board 10th Standard Board Exam prefer SCERT Maharashtra Question Bank Textbook Solutions to score more in exam.

Get the free view of chapter 6 Trigonometry 10th Standard Board Exam extra questions for 10th Standard SSC Mathematics 2 Geometry Maharashtra State Board 2021 and can use Shaalaa.com to keep it handy for your exam preparation