CBSE Class 9CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

RD Sharma solutions for Class 9 Mathematics chapter 3 - Rationalisation

Mathematics for Class 9 by R D Sharma (2018-19 Session)

Login
Create free account


      Forgot password?

Chapters

RD Sharma Mathematics Class 9 by R D Sharma (2018-19 Session)

Mathematics for Class 9 by R D Sharma (2018-19 Session)

Chapter 3 : Rationalisation

Pages 0 - 3

Simplify of the following:

`root(3)4  xx root(3)16`

Simplify of the following:

`root(4)1250/root(4)2`

Simplify the following expressions:

`(4 + sqrt7)(3 + sqrt2)`

Simplify the following expressions:

`(3 + sqrt3)(5 - sqrt2)`

Simplify the following expressions:

`(sqrt5 - 2)(sqrt3 - sqrt5)`

Simplify the following expressions:

`(11 + sqrt11)(11 - sqrt11)`

Simplify the following expressions:

`(5 + sqrt7)(5 - sqrt7)`

Simplify the following expressions:

`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`

Simplify the following expressions:

`(3 + sqrt3)(3 - sqrt3)`

Simplify the following expressions:

`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`

Simplify the following expressions:

`(sqrt3 + sqrt7)^2`

Simplify the following expressions:

`(sqrt5 - sqrt3)^2`

Simplify the following expressions:

`(2sqrt5 + 3sqrt2)^2`

Pages 13 - 15

Q 1.1 | Page 13

Rationalise the denominator of each of the following

`3/sqrt5`

Q 1.2 | Page 13

Rationalise the denominator of each of the following

`3/(2sqrt5)`

Q 1.3 | Page 13

Rationalise the denominator of each of the following 

`1/sqrt12`

Q 1.4 | Page 13

Rationalise the denominator of the following

`sqrt2/sqrt5`

Q 1.5 | Page 13

Rationalise the denominator of each of the following

`(sqrt3 + 1)/sqrt2`

Q 1.6 | Page 13

Rationalise the denominator of the following

`(sqrt2 + sqrt5)/3`

Q 1.7 | Page 13

Rationalise the denominator of the following 

`(3sqrt2)/sqrt5`

Q 2.1 | Page 14

Find the value to three places of decimals of the following. It is given that

`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`

`2/sqrt3`

Q 2.2 | Page 14

Find the value to three places of decimals of the following. It is given that

`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`

`3/sqrt10`

Q 2.3 | Page 14

Find the value to three places of decimals of the following. It is given that

`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`

`(sqrt5 + 1)/sqrt2`

Q 2.4 | Page 14

Find the value to three places of decimals of the following. It is given that

`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`

`(sqrt10 + sqrt15)/sqrt2`

`

Q 2.5 | Page 14

Find the value to three places of decimals of the following. It is given that

`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`

`(2 + sqrt3)/3`

Q 2.6 | Page 14

Find the value to three places of decimals of the following. It is given that

`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`

`(sqrt2 - 1)/sqrt5`

Q 3.1 | Page 14

Express the following with rational denominator:

`1/(3 + sqrt2)`

Q 3.2 | Page 14

Express of the following with rational denominator:

`1/(sqrt6 - sqrt5)`

Q 3.3 | Page 14

Express the following with rational denominator:

`16/(sqrt41 - 5)`

Q 3.4 | Page 14

Express the following with rational denominator:

`30/(5sqrt3 - 3sqrt5)`

Q 3.5 | Page 14

Express the following with rational denominator:

`1/(2sqrt5 - sqrt3)`

Q 3.6 | Page 14

Express the following with rational denominator:

`(sqrt3 + 1)/(2sqrt2 - sqrt3)`

Q 3.7 | Page 14

Express the following with rational denominator:

`(6 - 4sqrt2)/(6 + 4sqrt2)`

Q 3.8 | Page 14

Express the following with rational denominator:

`(3sqrt2 + 1)/(2sqrt5 - 3)`

Q 3.9 | Page 14

Express each one of the following with rational denominator:

`(b^2)/(sqrt(a^2 + b^2) + a)`

Q 4.1 | Page 14

Rationales the denominator and simplify:

`(3 - sqrt2)/(3 + sqrt2)`

Q 4.2 | Page 14

Rationales the denominator and simplify:

`(5 + 2sqrt3)/(7 + 4sqrt3)`

Q 4.3 | Page 14

Rationales the denominator and simplify:

`(1 + sqrt2)/(3 - 2sqrt2)`

Q 4.5 | Page 14

Rationales the denominator and simplify:

`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`

Q 4.6 | Page 14

Rationales the denominator and simplify:

`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`

Q 4.6 | Page 14

Rationales the denominator and simplify:

`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`

Q 5.1 | Page 14

Simplify:

`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`

Q 5.2 | Page 14

Simplify

`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`

Q 5.3 | Page 14

Simplify

`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) + 3/(sqrt5 + sqrt2)`

Q 6.1 | Page 14

In the following determine rational numbers a and b:

`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`

Q 6.2 | Page 14

In the following determine rational numbers a and b:

`(4 + sqrt2)/(2 + sqrt2) = n - sqrtb`

Q 6.3 | Page 14

In the following determine rational numbers a and b:

`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`

Q 6.4 | Page 14

In the following determine rational numbers a and b:

`(5 + 3sqrt3)/(7 + 4sqrt3) = a + bsqrt3`

Q 6.5 | Page 14

In the following determine rational numbers a and b:

`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`

Q 6.6 | Page 14

In the following determine rational numbers a and b:

`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`

Q 7 | Page 15

Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and  `sqrt5 = 2.236`

Q 8.1 | Page 15

Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`

`(3 - sqrt5)/(3 + 2sqrt5)`

Q 8.2 | Page 15

Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`

`(1 + sqrt2)/(3 - 2sqrt2)`

Q 10 | Page 14

if `x = 2 +  sqrt3`,find the value of `x^2 + 1/x^2`

Q 11 | Page 15

if   `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`

Q 12 | Page 15

if `x =  (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7` 

RD Sharma Mathematics Class 9 by R D Sharma (2018-19 Session)

Mathematics for Class 9 by R D Sharma (2018-19 Session)

RD Sharma solutions for Class 9 Mathematics chapter 3 - Rationalisation

RD Sharma solutions for Class 9 Maths chapter 3 (Rationalisation) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Mathematics for Class 9 by R D Sharma (2018-19 Session) solutions in a manner that help students grasp basic concepts better and faster.

Further, we at shaalaa.com are providing such solutions so that students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Class 9 Mathematics chapter 3 Rationalisation are Introduction of Real Number, Irrational Numbers, Real Numbers and Their Decimal Expansions, Representing Real Numbers on the Number Line, Operations on Real Numbers, Laws of Exponents for Real Numbers.

Using RD Sharma Class 9 solutions Rationalisation exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in RD Sharma Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 9 prefer RD Sharma Textbook Solutions to score more in exam.

Get the free view of chapter 3 Rationalisation Class 9 extra questions for Maths and can use shaalaa.com to keep it handy for your exam preparation

S
View in app×