CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

RD Sharma solutions for Class 12 Mathematics chapter 20 - Definite Integrals

Mathematics for Class 12 by R D Sharma (Set of 2 Volume) (2018-19 Session)

Login
Create free account


      Forgot password?

Chapters

RD Sharma Mathematics Class 12 by R D Sharma (Set of 2 Volume) (2018-19 Session)

Mathematics for Class 12 by R D Sharma (Set of 2 Volume) (2018-19 Session)

Chapter 20: Definite Integrals

Chapter 20: Definite Integrals solutions [Pages 1 - 39]

Q 1 | Page 16
\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]
Q 2 | Page 16
\[\int\limits_{- 2}^3 \frac{1}{x + 7} dx\]
Q 3 | Page 16
\[\int\limits_0^{1/2} \frac{1}{\sqrt{1 - x^2}} dx\]
Q 4 | Page 16
\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]
Q 5 | Page 16
\[\int\limits_2^3 \frac{x}{x^2 + 1} dx\]
Q 6 | Page 16
\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]
Q 7 | Page 16
\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]
Q 8 | Page 16
\[\int\limits_0^\infty e^{- x} dx\]
Q 9 | Page 16
\[\int\limits_0^1 \frac{x}{x + 1} dx\]
Q 10 | Page 16
\[\int\limits_0^\pi/2 \left( \sin x + \cos x \right) dx\]
Q 11 | Page 16

\[\int\limits_{\pi/4}^{\pi/2} \cot x\ dx\]

Q 12 | Page 16
\[\int\limits_0^{\pi/4} \sec x dx\]
Q 13 | Page 16
\[\int\limits_{\pi/6}^{\pi/4} cosec\ x\ dx\]
Q 14 | Page 16
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
Q 15 | Page 16
\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]
Q 16 | Page 16
\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]
Q 17 | Page 16
\[\int\limits_0^{\pi/2} \cos^2 x\ dx\]
Q 18 | Page 16
\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]
Q 19 | Page 16
\[\int\limits_0^{\pi/6} \cos x \cos 2x\ dx\]
Q 20 | Page 16
\[\int\limits_0^{\pi/2} \sin x \sin 2x\ dx\]
Q 21 | Page 16
\[\int\limits_{\pi/3}^{\pi/4} \left( \tan x + \cot x \right)^2 dx\]
Q 22 | Page 16
\[\int\limits_0^{\pi/2} \cos^4\ x\ dx\]

 

Q 23 | Page 16
\[\int\limits_0^{\pi/2} \left( a^2 \cos^2 x + b^2 \sin^2 x \right) dx\]
Q 24 | Page 16
\[\int\limits_0^{\pi/2} \sqrt{1 + \sin x}\ dx\]
Q 25 | Page 16
\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]
Q 26 | Page 16

Evaluate the following definite integrals:

\[\int_0^\frac{\pi}{2} x^2 \sin\ x\ dx\]
Q 27 | Page 17
\[\int\limits_0^{\pi/2} x \cos\ x\ dx\]
Q 28 | Page 17
\[\int\limits_0^{\pi/2} x^2 \cos\ x\ dx\]
Q 29 | Page 39
\[\int\limits_0^{\pi/2} \frac{x + \sin x}{1 + \cos x} dx\]
Q 29 | Page 17
\[\int\limits_0^{\pi/4} x^2 \sin\ x\ dx\]
Q 30 | Page 17
\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]
Q 31 | Page 17
\[\int\limits_0^{\pi/2} x^2 \cos^2 x\ dx\]
Q 32 | Page 17
\[\int\limits_1^2 \log\ x\ dx\]
Q 33 | Page 17
\[\int\limits_1^3 \frac{\log x}{\left( x + 1 \right)^2} dx\]
Q 34 | Page 17
\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]
Q 35 | Page 17
\[\int\limits_1^e \frac{\log x}{x} dx\]
Q 36 | Page 17
\[\int\limits_e^{e^2} \left\{ \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right\} dx\]
Q 37 | Page 17
\[\int\limits_1^2 \frac{x + 3}{x \left( x + 2 \right)} dx\]
Q 38 | Page 17
\[\int\limits_0^1 \frac{2x + 3}{5 x^2 + 1} dx\]
Q 39 | Page 17
\[\int\limits_0^2 \frac{1}{4 + x - x^2} dx\]
Q 40 | Page 17
\[\int\limits_0^1 \frac{1}{2 x^2 + x + 1} dx\]
Q 41 | Page 17
\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\]
Q 42 | Page 17
\[\int\limits_0^2 \frac{1}{\sqrt{3 + 2x - x^2}} dx\]
Q 43 | Page 17
\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]
Q 44 | Page 17
\[\int\limits_{- 1}^1 \frac{1}{x^2 + 2x + 5} dx\]
Q 45 | Page 17
\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]
Q 46 | Page 17
\[\int\limits_0^1 x \left( 1 - x \right)^5 dx\]
Q 47 | Page 17
\[\int\limits_1^2 \left( \frac{x - 1}{x^2} \right) e^x dx\]
Q 48 | Page 17
\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]
Q 49 | Page 17

\[\int\limits_0^1 \left( x e^x + \cos\frac{\ pix}{4} \right) dx\]

 

Q 50 | Page 17
\[\int\limits_{\pi/2}^\pi e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]
Q 51 | Page 17
\[\int\limits_0^{2\pi} e^{x/2} \sin\left( \frac{x}{2} + \frac{\pi}{4} \right) dx\]
Q 52 | Page 17
\[\int\limits_0^{2\pi} e^x \cos\left( \frac{\pi}{4} + \frac{x}{2} \right) dx\]
Q 53 | Page 17
\[\int_0^\pi e^{2x} \cdot \sin\left( \frac{\pi}{4} + x \right) dx\]
Q 54 | Page 17
\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]
Q 55 | Page 17
\[\int\limits_1^2 \frac{x}{\left( x + 1 \right) \left( x + 2 \right)} dx\]
Q 56 | Page 17
\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]
Q 57 | Page 17
\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]
Q 58 | Page 17
\[\int\limits_1^2 e^{2x} \left( \frac{1}{x} - \frac{1}{2 x^2} \right) dx\]
Q 59 | Page 17

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]
Q 60 | Page 17

\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.

Q 61 | Page 18

\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.

Q 62 | Page 18
\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]
Q 63 | Page 18
\[\int_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\]
Q 64 | Page 18
\[\int_0^\frac{\pi}{4} \left( \tan x + \cot x \right)^{- 2} dx\]
Q 65 | Page 18
\[\int_0^1 x\log\left( 1 + 2x \right)dx\]
Q 66 | Page 18
\[\int_\frac{\pi}{6}^\frac{\pi}{3} \left( \tan x + \cot x \right)^2 dx\]
Q 67 | Page 1
\[\int_0^\frac{\pi}{4} \left( a^2 \cos^2 x + b^2 \sin^2 x \right)dx\]
Q 68 | Page 18
\[\int_0^1 \frac{1}{1 + 2x + 2 x^2 + 2 x^3 + x^4}dx\]

Chapter 20: Definite Integrals solutions [Pages 38 - 40]

Q 1 | Page 38
\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]
Q 2 | Page 38
\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]
Q 3 | Page 38
\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]
Q 4 | Page 38
\[\int\limits_0^{\pi/2} \frac{1}{5 \cos x + 3 \sin x} dx\]
Q 5 | Page 38
\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]
Q 6 | Page 38
\[\int\limits_0^1 \frac{e^x}{1 + e^{2x}} dx\]
Q 7 | Page 38
\[\int\limits_0^1 x e^{x^2} dx\]
Q 8 | Page 38
\[\int\limits_1^3 \frac{\cos \left( \log x \right)}{x} dx\]
Q 9 | Page 38
\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]
Q 10 | Page 38
\[\int\limits_0^a \sqrt{a^2 - x^2} dx\]
Q 11 | Page 39
\[\int\limits_0^{\pi/2} \sqrt{\sin \phi} \cos^5 \phi\ d\phi\]

 

Q 12 | Page 39
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
Q 13 | Page 39
\[\int\limits_0^{\pi/2} \frac{\sin \theta}{\sqrt{1 + \cos \theta}} d\theta\]
Q 14 | Page 39
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
Q 15 | Page 39
\[\int\limits_0^1 \frac{\sqrt{\tan^{- 1} x}}{1 + x^2} dx\]
Q 16 | Page 39
\[\int\limits_0^2 x\sqrt{x + 2}\ dx\]
Q 17 | Page 39
\[\int\limits_0^1 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) dx\]
Q 18 | Page 39
\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{1 + \sin^4 x} dx\]
Q 19 | Page 39
\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]
Q 20 | Page 39
\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]
Q 21 | Page 39
\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]
Q 22 | Page 39
\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]
Q 23 | Page 39
\[\int\limits_0^1 \tan^{- 1} x\ dx\]
Q 24 | Page 39
\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
Q 25 | Page 39
\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]
Q 26 | Page 39
\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]
Q 27 | Page 39
\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]
Q 28 | Page 39
\[\int\limits_0^{\pi/2} \frac{1}{a^2 \sin^2 x + b^2 \cos^2 x} dx\]
Q 30 | Page 39
\[\int\limits_0^1 \frac{\tan^{- 1} x}{1 + x^2} dx\]
Q 31 | Page 39
\[\int_0^\frac{\pi}{4} \frac{\sin x + \cos x}{3 + \sin2x}dx\]
Q 32 | Page 39
\[\int\limits_0^1 x \tan^{- 1} x\ dx\]
Q 33 | Page 39
\[\int\limits_0^1 \frac{1 - x^2}{x^4 + x^2 + 1} dx\]
Q 34 | Page 39
\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]
Q 35 | Page 39
\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]
Q 36 | Page 39
\[\int\limits_0^{\pi/2} x^2 \sin\ x\ dx\]
Q 37 | Page 39
\[\int\limits_0^1 \sqrt{\frac{1 - x}{1 + x}} dx\]
Q 38 | Page 39
\[\int\limits_0^1 \frac{1 - x^2}{\left( 1 + x^2 \right)^2} dx\]
Q 39 | Page 39
\[\int\limits_{- 1}^1 5 x^4 \sqrt{x^5 + 1} dx\]
Q 40 | Page 39
\[\int_0^\frac{\pi}{2} \frac{\cos^2 x}{1 + 3 \sin^2 x}dx\]
Q 41 | Page 39
\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]
Q 42 | Page 39
\[\int\limits_0^\pi 5 \left( 5 - 4 \cos \theta \right)^{1/4} \sin \theta\ d \theta\]
Q 43 | Page 39
\[\int\limits_0^{\pi/6} \cos^{- 3} 2 \theta \sin 2\ \theta\ d\ \theta\]
Q 44 | Page 39

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]

Q 45 | Page 40
\[\int\limits_1^2 \frac{1}{x \left( 1 + \log x \right)^2} dx\]
Q 46 | Page 40
\[\int\limits_0^{\pi/2} \cos^5 x\ dx\]
Q 47 | Page 40
\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]
Q 48 | Page 40
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
Q 49 | Page 40
\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]
Q 50 | Page 39
\[\int\limits_0^{\pi/2} \sin 2x \tan^{- 1} \left( \sin x \right) dx\]
Q 51 | Page 40
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
Q 52 | Page 40
\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]
Q 53 | Page 40
\[\int\limits_{\pi/3}^{\pi/2} \frac{\sqrt{1 + \cos x}}{\left( 1 - \cos x \right)^{3/2}} dx\]
Q 54 | Page 40
\[\int\limits_0^a x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} dx\]
Q 55 | Page 40
\[\int\limits_{- a}^a \sqrt{\frac{a - x}{a + x}} dx\]
Q 56 | Page 40
\[\int\limits_0^{\pi/2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} dx\]
Q 57 | Page 40
\[\int_0^\frac{\pi}{2} \frac{\tan x}{1 + m^2 \tan^2 x}dx\]
Q 58 | Page 40
\[\int_0^\frac{1}{2} \frac{1}{\left( 1 + x^2 \right)\sqrt{1 - x^2}}dx\]
Q 59 | Page 40
\[\int_\frac{1}{3}^1 \frac{\left( x - x^3 \right)^\frac{1}{3}}{x^4}dx\]
Q 60 | Page 40
\[\int_0^\frac{\pi}{4} \frac{\sin^2 x \cos^2 x}{\left( \sin^3 x + \cos^3 x \right)^2}dx\]
Q 61 | Page 40
\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]
Q 62 | Page 40
\[\int_0^\frac{\pi}{2} \frac{\cos x}{\left( \cos\frac{x}{2} + \sin\frac{x}{2} \right)^n}dx\]

Chapter 20: Definite Integrals solutions [Page 55]

Q 1.1 | Page 55
\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \binom{4x + 3, if 1 \leq x \leq 2}{3x + 5, if 2 \leq x \leq 4}\]

 

Q 1.2 | Page 55
\[\int\limits_1^4 f\left( x \right) dx, where\ f\left( x \right) = \binom{4x + 3, if 1 \leq x \leq 2}{3x + 5, if 2 \leq x \leq 4}\]

 

Q 1.3 | Page 55

\[\int\limits_1^4 f\left( x \right) dx\, where\ f\left( x \right) = \begin{cases}7x + 3 & , & if 1 \leq x \leq 3 \\ 8x & , & if 3 \leq x \leq 4\end{cases}\]

Chapter 20: Definite Integrals solutions [Pages 56 - 61]

Q 2 | Page 56

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]
Q 3 | Page 56

Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]
Q 4 | Page 56

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]
Q 4 | Page 61

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 

Q 5 | Page 56

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| 2x + 3 \right| dx\]
Q 6 | Page 56

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 

Q 7 | Page 56

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 

Q 8 | Page 56

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 

Q 9 | Page 56

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 

Q 10 | Page 56

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

 

Q 11 | Page 56

Evaluate the following integral:

\[\int\limits_0^\pi/2 \left| \cos 2x \right| dx\]
Q 12 | Page 56

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 

Q 13 | Page 56

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]
Q 14 | Page 56

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 

Q 15 | Page 56

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 

Q 16 | Page 56

Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]
Q 17 | Page 56

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 

Q 18 | Page 56

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 

Q 19 | Page 56

Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]
Q 20 | Page 56
\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 

Q 21 | Page 56
\[\int_{- 2}^2 x e^\left| x \right| dx\]
Q 22 | Page 56
\[\int_{- \frac{\pi}{4}}^\frac{\pi}{2} \sin x\left| \sin x \right|dx\]

 

Q 23 | Page 56
\[\int_0^\pi \cos x\left| \cos x \right|dx\]
Q 24 | Page 56
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]
Q 25 | Page 56
\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]
Q 26 | Page 56
\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{- \frac{\pi}{2}}{\sqrt{\cos x \sin^2 x}}dx\]
Q 27 | Page 56
\[\int_0^2 2x\left[ x \right]dx\]
Q 28 | Page 56
\[\int_0^{2\pi} \cos^{- 1} \left( \cos x \right)dx\]

Chapter 20: Definite Integrals solutions [Page 61]

Q 1 | Page 61

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 

Q 2 | Page 61

Evaluate each of the following integral:

\[\int_0^{2\pi} \log\left( \sec x + \tan x \right)dx\]

 

Q 3 | Page 61

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]
Q 5 | Page 61

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 

Q 6 | Page 61

Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]
Q 7 | Page 61

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 

Q 8 | Page 61

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]
Q 9 | Page 61

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]
Q 10 | Page 61

Evaluate each of the following integral:

\[\int_a^b \frac{x^\frac{1}{n}}{x^\frac{1}{n} + \left( a + b - x \right)^\frac{1}{n}}dx, n \in N, n \geq 2\]

Q 11 | Page 61
\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 

Q 12 | Page 61
\[\int\limits_0^a \frac{\sqrt{x}}{\sqrt{x} + \sqrt{a - x}} dx\]
Q 13 | Page 61
\[\int\limits_0^5 \frac{\sqrt[4]{x + 4}}{\sqrt[4]{x + 4} + \sqrt[4]{9 - x}} dx\]
Q 14 | Page 61
\[\int\limits_0^7 \frac{\sqrt[3]{x}}{\sqrt[3]{x} + \sqrt[3]{7} - x} dx\]
Q 15 | Page 61
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]
Q 16 | Page 61

If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 

Chapter 20: Definite Integrals solutions [Pages 94 - 96]

Q 1 | Page 94
\[\int\limits_0^{\pi/2} \frac{dx}{1 + \tan x}\]

 

Q 2 | Page 94
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot x} dx\]
Q 3 | Page 94
\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]
Q 4 | Page 94
\[\int\limits_0^{\pi/2} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} dx\]
Q 5 | Page 94
\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx\]

 

Q 6 | Page 94
\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]
Q 7 | Page 95
\[\int\limits_0^a \frac{1}{x + \sqrt{a^2 - x^2}} dx\]
Q 8 | Page 95
\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]
Q 9 | Page 95
\[\int\limits_0^1 \frac{\log\left( 1 + x \right)}{1 + x^2} dx\]

 

Q 10 | Page 95
\[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
Q 11 | Page 95
\[\int\limits_0^\pi \frac{x \tan x}{\sec x cosec x} dx\]
Q 12 | Page 95
\[\int\limits_0^\pi x \sin x \cos^4 x\ dx\]
Q 13 | Page 95
\[\int\limits_0^\pi x \sin^3 x\ dx\]
Q 14 | Page 95
\[\int\limits_0^\pi x \log \sin x\ dx\]
Q 15 | Page 95
\[\int\limits_0^\pi \frac{x \sin x}{1 + \sin x} dx\]
Q 16 | Page 95
\[\int\limits_0^\pi \frac{x}{1 + \cos \alpha \sin x} dx, 0 < \alpha < \pi\]
Q 17 | Page 95
\[\int\limits_0^\pi x \cos^2 x\ dx\]
Q 18 | Page 95

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 

Q 19 | Page 95

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{\tan^7 x}{\tan^7 x + \cot^7 x}dx\]
Q 20 | Page 95

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]
Q 21 | Page 95

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]
Q 22 | Page 95
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
Q 23 | Page 95
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx\]
Q 24 | Page 95
\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]
Q 25 | Page 95
\[\int\limits_{- 1}^1 \log\left( \frac{2 - x}{2 + x} \right) dx\]
Q 26 | Page 95
\[\int\limits_{- \pi/4}^{\pi/4} \sin^2 x\ dx\]
Q 27 | Page 95
\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]
Q 28 | Page 95
\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]
Q 29 | Page 95

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]
Q 30 | Page 95

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]
Q 31 | Page 95

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]
Q 32 | Page 95

Evaluate the following integral:

\[\int_{- \frac{3\pi}{2}}^{- \frac{\pi}{2}} \left\{ \sin^2 \left( 3\pi + x \right) + \left( \pi + x \right)^3 \right\}dx\]
Q 33 | Page 95
\[\int\limits_0^2 x\sqrt{2 - x} dx\]
Q 34 | Page 95
\[\int\limits_0^1 \log\left( \frac{1}{x} - 1 \right) dx\]

 

Q 35 | Page 95

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 

Q 36 | Page 95

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]
Q 37 | Page 95

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]

Q 38 | Page 95

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 

Q 39 | Page 95

Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 

Q 41 | Page 95
\[\int_0^1 | x\sin \pi x | dx\]
Q 42 | Page 95

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]
Q 43 | Page 96

If f is an integrable function such that f(2a − x) = f(x), then prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 2 \int\limits_0^a f\left( x \right) dx\]

 

Q 44 | Page 96

If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]
Q 45.1 | Page 96

If f is an integrable function, show that

(i)

\[\int\limits_{- a}^a f\left( x^2 \right) dx = 2 \int\limits_0^a f\left( x^2 \right) dx\]
Q 45.2 | Page 96

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 

Q 46 | Page 96

If f (x) is a continuous function defined on [0, 2a]. Then, prove that

\[\int\limits_0^{2a} f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( 2a - x \right) \right\} dx\]

 

Q 47 | Page 96

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]
Q 48 | Page 96

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]
Q 49 | Page 96

Prove that:

\[\int_0^\pi xf\left( \sin x \right)dx = \frac{\pi}{2} \int_0^\pi f\left( \sin x \right)dx\]

Chapter 20: Definite Integrals solutions [Pages 110 - 111]

Q 1 | Page 110
\[\int\limits_0^3 \left( x + 4 \right) dx\]
Q 2 | Page 110
\[\int\limits_0^2 \left( x + 3 \right) dx\]
Q 3 | Page 110
\[\int\limits_1^3 \left( 3x - 2 \right) dx\]
Q 4 | Page 110
\[\int\limits_{- 1}^1 \left( x + 3 \right) dx\]
Q 5 | Page 110
\[\int\limits_0^5 \left( x + 1 \right) dx\]
Q 6 | Page 110
\[\int\limits_1^3 \left( 2x + 3 \right) dx\]
Q 7 | Page 110
\[\int\limits_3^5 \left( 2 - x \right) dx\]
Q 8 | Page 110
\[\int\limits_0^2 \left( x^2 + 1 \right) dx\]
Q 9 | Page 110
\[\int\limits_1^2 x^2 dx\]
Q 10 | Page 110
\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]
Q 11 | Page 110
\[\int\limits_1^2 \left( x^2 - 1 \right) dx\]
Q 12 | Page 110
\[\int\limits_0^2 \left( x^2 + 4 \right) dx\]
Q 13 | Page 111
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
Q 14 | Page 111
\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]
Q 15 | Page 111
\[\int\limits_0^2 e^x dx\]
Q 16 | Page 111
\[\int\limits_a^b e^x dx\]
Q 17 | Page 111
\[\int\limits_a^b \cos\ x\ dx\]
Q 18 | Page 111
\[\int\limits_0^{\pi/2} \sin x\ dx\]
Q 19 | Page 111
\[\int\limits_0^{\pi/2} \cos x\ dx\]
Q 20 | Page 111
\[\int\limits_1^4 \left( 3 x^2 + 2x \right) dx\]
Q 21 | Page 111
\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]
Q 22 | Page 111
\[\int\limits_0^2 \left( x^2 + 2 \right) dx\]
Q 23 | Page 111
\[\int\limits_0^4 \left( x + e^{2x} \right) dx\]
Q 23 | Page 111
\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]
Q 24 | Page 111
\[\int\limits_0^2 \left( x^2 + x \right) dx\]
Q 25 | Page 111
\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]
Q 26 | Page 111
\[\int\limits_0^3 \left( 2 x^2 + 3x + 5 \right) dx\]
Q 27 | Page 111
\[\int\limits_a^b x\ dx\]
Q 28 | Page 111
\[\int\limits_0^5 \left( x + 1 \right) dx\]
Q 29 | Page 111
\[\int\limits_2^3 x^2 dx\]
Q 30 | Page 111
\[\int\limits_1^4 \left( x^2 - x \right) dx\]
Q 31 | Page 111
\[\int\limits_0^2 \left( x^2 - x \right) dx\]
Q 32 | Page 111
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Q 33 | Page 111

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Chapter 20: Definite Integrals solutions [Pages 111 - 116]

Q 1 | Page 115
\[\int\limits_0^{\pi/2} \sin^2 x\ dx .\]
Q 2 | Page 115
\[\int\limits_0^{\pi/2} \cos^2 x\ dx .\]
Q 3 | Page 115
\[\int\limits_{- \pi/2}^{\pi/2} \sin^2 x\ dx .\]
Q 4 | Page 115
\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]
Q 5 | Page 111
\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]
Q 6 | Page 115
\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 

Q 7 | Page 115
\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]
Q 8 | Page 115
\[\int\limits_0^1 \frac{1}{x^2 + 1} dx\]
Q 9 | Page 115
\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]
Q 10 | Page 115
\[\int\limits_0^\infty e^{- x} dx .\]
Q 11 | Page 115
\[\int\limits_0^4 \frac{1}{\sqrt{16 - x^2}} dx .\]
Q 12 | Page 115
\[\int\limits_0^3 \frac{1}{x^2 + 9} dx .\]
Q 13 | Page 115
\[\int\limits_0^{\pi/2} \sqrt{1 - \cos 2x}\ dx .\]
Q 14 | Page 115
\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]
Q 15 | Page 115
\[\int\limits_0^{\pi/2} \log \left( \frac{3 + 5 \cos x}{3 + 5 \sin x} \right) dx .\]

 

Q 16 | Page 115
\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]
Q 17 | Page 115
\[\int\limits_0^\pi \cos^5 x\ dx .\]
Q 18 | Page 115
\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]
Q 19 | Page 115
\[\int\limits_{- 1}^1 x\left| x \right| dx .\]
Q 20 | Page 115
\[\int\limits_a^b \frac{f\left( x \right)}{f\left( x \right) + f\left( a + b - x \right)} dx .\]
Q 21 | Page 115
\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]
Q 22 | Page 115

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 

Q 23 | Page 115
\[\int\limits_2^3 \frac{1}{x}dx\]
Q 24 | Page 115
\[\int\limits_0^2 \sqrt{4 - x^2} dx\]
Q 25 | Page 115
\[\int\limits_0^1 \frac{2x}{1 + x^2} dx\]
Q 26 | Page 115

Evaluate each of the following  integral:

\[\int_0^1 x e^{x^2} dx\]

 

Q 27 | Page 115

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \sin2xdx\]
Q 28 | Page 115

Evaluate each of the following integral:

\[\int_e^{e^2} \frac{1}{x\log x}dx\]
Q 29 | Page 115

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 

Q 30 | Page 115

Solve each of the following integral:

\[\int_2^4 \frac{x}{x^2 + 1}dx\]
Q 31 | Page 116

If \[\int\limits_0^1 \left( 3 x^2 + 2x + k \right) dx = 0,\] find the value of k.

 

Q 32 | Page 116

If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.

 

 

Q 33 | Page 116

If \[f\left( x \right) = \int_0^x t\sin tdt\], the write the value of \[f'\left( x \right)\]

Q 34 | Page 116

If \[\int_0^a \frac{1}{4 + x^2}dx = \frac{\pi}{8}\] , find the value of a.

Q 35 | Page 116

Write the coefficient abc of which the value of the integral

\[\int\limits_{- 3}^3 \left( a x^2 + bx + c \right) dx\] is independent.
Q 36 | Page 116

Evaluate : 

\[\int\limits_2^3 3^x dx .\]
Q 37 | Page 116
\[\int\limits_0^2 \left[ x \right] dx .\]
Q 38 | Page 116
\[\int\limits_0^{15} \left[ x \right] dx .\]
Q 39 | Page 116

\[\int\limits_0^1 \left\{ x \right\} dx,\] where {x} denotes the fractional part of x.  

 
Q 40 | Page 116
\[\int\limits_0^1 e^\left\{ x \right\} dx .\]
Q 41 | Page 116
\[\int\limits_0^2 x\left[ x \right] dx .\]
Q 42 | Page 116
\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]
Q 43 | Page 116
\[\int\limits_1^2 \log_e \left[ x \right] dx .\]
Q 44 | Page 116
\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]
Q 45 | Page 116

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^\pi/4 \sin \left\{ x \right\} dx\]

 

Chapter 20: Definite Integrals solutions [Pages 117 - 120]

Q 1 | Page 117
\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals
  • π/2

  • π/4

  • π/6

  • π/8

Q 2 | Page 117

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\] equals

  • 0

  • 1/2

  • 2

  • 3/2

Q 3 | Page 117

\[\int\limits_0^\pi \frac{x \tan x}{\sec x + \cos x} dx\] is 

  • \[\frac{\pi^2}{4}\]
  • \[\frac{\pi^2}{2}\]
  • \[\frac{3 \pi^2}{2}\]
  • \[\frac{\pi^2}{3}\]

Q 4 | Page 117

The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is 

  • 0

  • 2

  • 8

  • 4

Q 5 | Page 117

The value of the integral \[\int\limits_0^\pi/2 \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\]  is 

  • 0

  • π/2

  • π/4

  • none of these

Q 6 | Page 117

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals

  •  log 2 − 1

  •  log 2

  • log 4 − 1

  •  − log 2

Q 7 | Page 117

\[\int\limits_0^{\pi^2 /4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\]  equals

  • 2

  • 1

  • π/4

  • π2/8

Q 8 | Page 117
\[\int\limits_0^\pi/2 \frac{\cos x}{\left( 2 + \sin x \right)\left( 1 + \sin x \right)} dx\] equals
  • \[\log\left( \frac{2}{3} \right)\]
  • \[\log\left( \frac{3}{2} \right)\]
  • \[\log\left( \frac{3}{4} \right)\]
  • \[\log\left( \frac{4}{3} \right)\]
Q 9 | Page 117

\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\]

  • \[\frac{1}{3} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
  • \[\frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{1}{\sqrt{3}} \right)\]
  • \[\sqrt{3} \tan^{- 1} \left( \sqrt{3} \right)\]

     

  • \[2\sqrt{3} \tan^{- 1} \sqrt{3}\]
Q 10 | Page 117

\[\int\limits_0^\pi \sqrt{\frac{1 - x}{1 + x}}dx =\] 

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{2} - 1\]

  • \[\frac{\pi}{2} + 1\]
  •  π + 1

  • non of above this

Q 11 | Page 117
\[\int\limits_0^\pi \frac{1}{a + b \cos x} dx =\]
  • \[\frac{\pi}{\sqrt{a^2 - b^2}}\]

  • \[\frac{\pi}{ab}\]

     

  • \[\frac{\pi}{a^2 + b^2}\]

  • (a + b) π

Q 12 | Page 118
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\cot}x} dx\] is
  •  π/3

  •  π/6

  • π/12

  • π/2

Q 13 | Page 118

Given that

\[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\]  the value of

\[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
  • \[\frac{\pi}{60}\]
  • \[\frac{\pi}{20}\]
  • \[\frac{\pi}{40}\]
  • \[\frac{\pi}{80}\]
Q 14 | Page 118
\[\int\limits_1^e \log x\ dx =\]
  • 1

  •  e − 1

  • e + 1

  •  0

Q 15 | Page 118
\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to
  • \[\frac{\pi}{12}\]
  • \[\frac{\pi}{6}\]
  • \[\frac{\pi}{4}\]
  • \[\frac{\pi}{3}\]
Q 16 | Page 118
\[\int\limits_0^3 \frac{3x + 1}{x^2 + 9} dx =\]
  • \[\frac{\pi}{12} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{2} + \log\left( 2\sqrt{2} \right)\]
  • \[\frac{\pi}{3} + \log\left( 2\sqrt{2} \right)\]
Q 17 | Page 118

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 

  • \[\frac{\pi}{2}\]
  • \[\frac{\pi}{4}\]
  • \[\frac{\pi}{6}\]
  • \[\frac{\pi}{3}\]
Q 18 | Page 118
\[\int\limits_{- \pi/2}^{\pi/2} \sin\left| x \right| dx\]  is equal to
  •  1

  • 2

  • − 1

  • − 2

Q 19 | Page 118
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan x} dx\]  is equal to
  • \[\frac{ \pi}{4}\]
  • \[\frac{\pi}{3}\]
  • \[\frac{\pi}{2}\]
  •  π

Q 20 | Page 118

The value of \[\int\limits_0^{\pi/2} \cos x\ e^{\sin x}\ dx\] is

 

  •  1

  • e − 1

  • 0

  • − 1 

Q 21 | Page 118

If \[\int\limits_0^a \frac{1}{1 + 4 x^2} dx = \frac{\pi}{8},\] then a equals

 

  • \[\frac{\pi}{2}\]
  • \[\frac{1}{2}\]
  • \[\frac{\pi}{4}\]
  • 1

Q 22 | Page 118

If \[\int\limits_0^1 f\left( x \right) dx = 1, \int\limits_0^1 xf\left( x \right) dx = a, \int\limits_0^1 x^2 f\left( x \right) dx = a^2 , then \int\limits_0^1 \left( a - x \right)^2 f\left( x \right) dx\] equals

  • 4a2

  • 0

  •  2a2

  • none of these

Q 23 | Page 119

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 

  • \[\frac{\pi^4}{2}\]
  • \[\frac{\pi^4}{4}\]
  •  0

  • none of these

Q 24 | Page 119
\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{\sin 2x} dx\]  is equal to
  •  loge 3

  • \[\log_e \sqrt{3}\]
  • \[\frac{1}{2}\log\left( - 1 \right)\]
  •  log (−1)

     
Q 25 | Page 119
\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to
  • −2

  • 2

  • 0

  • 4

Q 26 | Page 119

The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is

 

  • \[\frac{1}{3 \ln x}\]
  • \[\frac{1}{3 \ln x} - \frac{1}{2 \ln x}\]
  • (ln x)−1 x (x − 1)

  • \[\frac{3 x^2}{\ln x}\]
Q 27 | Page 119

If \[I_{10} = \int\limits_0^{\pi/2} x^{10} \sin x\ dx,\]  then the value of I10 + 90I8 is

 

  • \[9 \left( \frac{\pi}{2} \right)^9\]
  • \[10 \left( \frac{\pi}{2} \right)^9\]
  • \[\left( \frac{\pi}{2} \right)^9\]
  • \[9 \left( \frac{\pi}{2} \right)^8\]
Q 28 | Page 119
\[\int\limits_0^1 \frac{x}{\left( 1 - x \right)^{54}} dx =\]
Q 29 | Page 119
\[\lim_{n \square \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to
  • \[\ln\left( \frac{1}{3} \right)\]
  • \[\ln\left( \frac{2}{3} \right)\]
  • \[\ln\left( \frac{3}{2} \right)\]
  • \[\ln\left( \frac{4}{3} \right)\]
Q 30 | Page 118

The value of the integral \[\int\limits_{- 2}^2 \left| 1 - x^2 \right| dx\] is 

 

  •  4

  •  2

  • −2

  • 0

Q 31 | Page 119
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to
  • 0

  • 1

  • π/2

  • π/4

Q 32 | Page 119
\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to
Q 33 | Page 120
\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to
  •  0

  •  π

  • π/2

  • π/4

Q 34 | Page 120
\[\int\limits_0^{\pi/2} x \sin x\ dx\]  is equal to
  •  π/4

  •  π/2

  • π

  • 1

Q 35 | Page 120
\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 
  • π

  •  π/2

  •  0

Q 36 | Page 120

The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is

 

Q 37 | Page 120
\[\int\limits_0^\infty \log\left( x + \frac{1}{x} \right) \frac{1}{1 + x^2} dx =\] 
  • π ln 2

  • −π ln 2

  • 0

  • \[- \frac{\pi}{2}\ln 2\]

Q 38 | Page 120

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to

  • \[2 \int\limits_0^a f\left( x \right) dx\]
  •  0

  • \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^a f\left( 2a - x \right) dx\]

  • \[\int\limits_0^a f\left( x \right) dx + \int\limits_0^{2a} f\left( 2a - x \right) dx\]
Q 39 | Page 120

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to

  • \[\frac{a + b}{2} \int\limits_a^b f\left( b - x \right) dx\]

     

  • \[\frac{a + b}{2} \int\limits_a^b f\left( b + x \right) dx\]

     

  • \[\frac{b - a}{2} \int\limits_a^b f\left( x \right) dx\]
  • \[\frac{b + a}{2} \int\limits_a^b f\left( x \right) dx\]
Q 40 | Page 120

The value of \[\int\limits_0^1 \tan^{- 1} \left( \frac{2x - 1}{1 + x - x^2} \right) dx,\] is

  • 1

  • 0

  • −1

  • π/4

Q 41 | Page 120

The value of \[\int\limits_0^{\pi/2} \log\left( \frac{4 + 3 \sin x}{4 + 3 \cos x} \right) dx\] is 

 

  • 2

  • \[\frac{3}{4}\]
  • 0

  • −2

Q 42 | Page 120

The value of \[\int\limits_{- \pi/2}^{\pi/2} \left( x^3 + x \cos x + \tan^5 x + 1 \right) dx, \] is 

  •  0

  • 2

  • π

  • 1

Chapter 20: Definite Integrals

RD Sharma Mathematics Class 12 by R D Sharma (Set of 2 Volume) (2018-19 Session)

Mathematics for Class 12 by R D Sharma (Set of 2 Volume) (2018-19 Session)

RD Sharma solutions for Class 12 Mathematics chapter 20 - Definite Integrals

RD Sharma solutions for Class 12 Maths chapter 20 (Definite Integrals) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Mathematics for Class 12 by R D Sharma (Set of 2 Volume) (2018-19 Session) solutions in a manner that help students grasp basic concepts better and faster.

Further, we at shaalaa.com are providing such solutions so that students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Class 12 Mathematics chapter 20 Definite Integrals are Indefinite Integral Problems, Definite Integrals Problems, Comparison Between Differentiation and Integration, Geometrical Interpretation of Indefinite Integral, Integrals of Some Particular Functions, Indefinite Integral by Inspection, Properties of Indefinite Integral, Integration Using Trigonometric Identities, Introduction of Integrals, Evaluation of Definite Integrals by Substitution, Properties of Definite Integrals, Fundamental Theorem of Calculus, Definite Integral as the Limit of a Sum, Evaluation of Simple Integrals of the Following Types and Problems, Methods of Integration - Integration by Parts, Methods of Integration - Integration Using Partial Fractions, Methods of Integration - Integration by Substitution, Integration as an Inverse Process of Differentiation.

Using RD Sharma Class 12 solutions Definite Integrals exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in RD Sharma Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 12 prefer RD Sharma Textbook Solutions to score more in exam.

Get the free view of chapter 20 Definite Integrals Class 12 extra questions for Maths and can use shaalaa.com to keep it handy for your exam preparation

S
View in app×