# RD Sharma solutions for Class 12 Maths chapter 22 - Differential Equations [Latest edition]

## Chapter 22: Differential Equations

Exercise 22.1Exercise 22.2Exercise 22.3Exercise 22.4Exercise 22.5Exercise 22.6Exercise 22.7Exercise 22.8Exercise 22.9Exercise 22.11Very Short AnswersMCQRevision Exercise
Exercise 22.1 [Pages 4 - 5]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.1 [Pages 4 - 5]

Exercise 22.1 | Q 1 | Page 4
$\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t$
Exercise 22.1 | Q 2 | Page 4
$\frac{d^2 y}{d x^2} + 4y = 0$
Exercise 22.1 | Q 3 | Page 5
$\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2$
Exercise 22.1 | Q 4 | Page 5
$\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}$
Exercise 22.1 | Q 5 | Page 5
$\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0$
Exercise 22.1 | Q 6 | Page 5
$\sqrt[3]{\frac{d^2 y}{d x^2}} = \sqrt{\frac{dy}{dx}}$
Exercise 22.1 | Q 7 | Page 5
$\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}$
Exercise 22.1 | Q 8 | Page 5
$x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}$
Exercise 22.1 | Q 9 | Page 5
$y\frac{d^2 x}{d y^2} = y^2 + 1$
Exercise 22.1 | Q 10 | Page 5
$s^2 \frac{d^2 t}{d s^2} + st\frac{dt}{ds} = s$
Exercise 22.1 | Q 11 | Page 5
$x^2 \left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + y^4 = 0$
Exercise 22.1 | Q 12 | Page 5
$\frac{d^3 y}{d x^3} + \left( \frac{d^2 y}{d x^2} \right)^3 + \frac{dy}{dx} + 4y = \sin x$
Exercise 22.1 | Q 13 | Page 5

(xy2 + x) dx + (y − x2y) dy = 0

Exercise 22.1 | Q 14 | Page 5
$\sqrt{1 - y^2} dx + \sqrt{1 - x^2} dx = 0$
Exercise 22.1 | Q 15 | Page 5
$\frac{d^2 y}{d x^2} = \left( \frac{dy}{dx} \right)^{2/3}$
Exercise 22.1 | Q 16 | Page 5
$2\frac{d^2 y}{d x^2} + 3\sqrt{1 - \left( \frac{dy}{dx} \right)^2 - y} = 0$
Exercise 22.1 | Q 17 | Page 5
$5\frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}$
Exercise 22.1 | Q 18 | Page 5
$y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}$
Exercise 22.1 | Q 19 | Page 5
$y = px + \sqrt{a^2 p^2 + b^2},\text{ where p} = \frac{dy}{dx}$
Exercise 22.1 | Q 20 | Page 5
$\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)$
Exercise 22.1 | Q 21 | Page 5
$\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x \sin \left( \frac{d^2 y}{d x^2} \right)$
Exercise 22.1 | Q 22 | Page 5

(y'')2 + (y')3 + sin y = 0

Exercise 22.1 | Q 23 | Page 5
$\frac{d^2 y}{d x^2} + 5x\left( \frac{dy}{dx} \right) - 6y = \log x$
Exercise 22.1 | Q 24 | Page 5
$\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} + \frac{dy}{dx} + y \sin y = 0$
Exercise 22.1 | Q 25 | Page 5
$\frac{dy}{dx} + e^y = 0$
Exercise 22.1 | Q 26 | Page 5
$\left( \frac{dy}{dx} \right)^3 - 4 \left( \frac{dy}{dx} \right)^2 + 7y = \sin x$
Exercise 22.2 [Pages 16 - 17]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.2 [Pages 16 - 17]

Exercise 22.2 | Q 1 | Page 16

Form the differential equation of the family of curves represented by y2 = (x − c)3.

Exercise 22.2 | Q 2 | Page 16

Form the differential equation corresponding to y = emx by eliminating m.

Exercise 22.2 | Q 3.1 | Page 16

Form the differential equation from the following primitive where constants are arbitrary:
y2 = 4ax

Exercise 22.2 | Q 3.2 | Page 16

Form the differential equation from the following primitive where constants are arbitrary:
y = cx + 2c2 + c3

Exercise 22.2 | Q 3.3 | Page 16

Form the differential equation from the following primitive where constants are arbitrary:
xy = a2

Exercise 22.2 | Q 3.4 | Page 16

Form the differential equation from the following primitive where constants are arbitrary:
y = ax2 + bx + c

Exercise 22.2 | Q 4 | Page 16

Find the differential equation of the family of curves y = Ae2x + Be−2x, where A and B are arbitrary constants.

Exercise 22.2 | Q 5 | Page 16

Find the differential equation of the family of curves, x = A cos nt + B sin nt, where A and B are arbitrary constants.

Exercise 22.2 | Q 6 | Page 16

Form the differential equation corresponding to y2 = a (b − x2) by eliminating a and b.

Exercise 22.2 | Q 7 | Page 16

Form the differential equation corresponding to y2 − 2ay + x2 = a2 by eliminating a.

Exercise 22.2 | Q 8 | Page 16

Form the differential equation corresponding to (x − a)2 + (y − b)2 = r2 by eliminating a and b.

Exercise 22.2 | Q 9 | Page 17

Find the differential equation of all the circles which pass through the origin and whose centres lie on y-axis.

Exercise 22.2 | Q 10 | Page 17

Find the differential equation of all the circles which pass through the origin and whose centres lie on x-axis.

Exercise 22.2 | Q 11 | Page 17

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

Exercise 22.2 | Q 12 | Page 17

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.

Exercise 22.2 | Q 13 | Page 17

Show that the differential equation of which y = 2(x2 − 1) + $c e^{- x^2}$ is a solution, is $\frac{dy}{dx} + 2xy = 4 x^3$

Exercise 22.2 | Q 14 | Page 17

Form the differential equation having $y = \left( \sin^{- 1} x \right)^2 + A \cos^{- 1} x + B$, where A and B are arbitrary constants, as its general solution.

Exercise 22.2 | Q 15.1 | Page 17

Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x + a)2 + y2 = a2

Exercise 22.2 | Q 15.2 | Page 17

Form the differential equation of the family of curves represented by the equation (a being the parameter):
(2x − a)2 − y2 = a2

Exercise 22.2 | Q 15.3 | Page 17

Form the differential equation of the family of curves represented by the equation (a being the parameter):
(x − a)2 + 2y2 = a2

Exercise 22.2 | Q 16.01 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = a2

Exercise 22.2 | Q 16.02 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 − y2 = a2

Exercise 22.2 | Q 16.03 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4ax

Exercise 22.2 | Q 16.04 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + (y − b)2 = 1

Exercise 22.2 | Q 16.05 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
(x − a)2 − y2 = 1

Exercise 22.2 | Q 16.06 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):

$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Exercise 22.2 | Q 16.07 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y2 = 4a (x − b)

Exercise 22.2 | Q 16.08 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = ax3

Exercise 22.2 | Q 16.09 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
x2 + y2 = ax3

Exercise 22.2 | Q 16.1 | Page 17

Represent the following families of curves by forming the corresponding differential equations (a, b being parameters):
y = eax

Exercise 22.2 | Q 17 | Page 17

Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.

Exercise 22.2 | Q 18 | Page 17

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.

Exercise 22.2 | Q 19 | Page 17

Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.

Exercise 22.3 [Pages 24 - 25]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.3 [Pages 24 - 25]

Exercise 22.3 | Q 1 | Page 24

Show that y = bex + ce2x is a solution of the differential equation, $\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0$

Exercise 22.3 | Q 2 | Page 24

Verify that y = 4 sin 3x is a solution of the differential equation $\frac{d^2 y}{d x^2} + 9y = 0$

Exercise 22.3 | Q 3 | Page 24

Show that y = ae2x + be−x is a solution of the differential equation $\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0$

Exercise 22.3 | Q 4 | Page 24

Show that the function y = A cos x + B sin x is a solution of the differential equation $\frac{d^2 y}{d x^2} + y = 0$

Exercise 22.3 | Q 5 | Page 25

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation $\frac{d^2 y}{d x^2} + 4y = 0$.

Exercise 22.3 | Q 6 | Page 25

Show that y = AeBx is a solution of the differential equation

$\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2$
Exercise 22.3 | Q 7 | Page 25

Verify that y = $\frac{a}{x} + b$ is a solution of the differential equation
$\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0$

Exercise 22.3 | Q 8 | Page 25

Verify that y2 = 4ax is a solution of the differential equation y = x $\frac{dy}{dx} + a\frac{dx}{dy}$

Exercise 22.3 | Q 9 | Page 25

Show that Ax2 + By2 = 1 is a solution of the differential equation x $\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}$

Exercise 22.3 | Q 10 | Page 25

Show that y = ax3 + bx2 + c is a solution of the differential equation $\frac{d^3 y}{d x^3} = 6a$.

Exercise 22.3 | Q 11 | Page 25

Hence, the given function is the solution to the given differential equation. $\frac{c - x}{1 + cx}$ is a solution of the differential equation $(1+x^2)\frac{dy}{dx}+(1+y^2)=0$.

Exercise 22.3 | Q 12 | Page 25

Show that y = ex (A cos x + B sin x) is the solution of the differential equation $\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0$

Exercise 22.3 | Q 13 | Page 25

Verify that y = cx + 2c2 is a solution of the differential equation

$2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0$.
Exercise 22.3 | Q 14 | Page 25

Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.

Exercise 22.3 | Q 15 | Page 25

Verify that y2 = 4a (x + a) is a solution of the differential equations
$y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}$

Exercise 22.3 | Q 16 | Page 25

Verify that $y = ce^{tan^{- 1}} x$  is a solution of the differential equation $\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0$

Exercise 22.3 | Q 17 | Page 25

Verify that $y = e^{m \cos^{- 1} x}$ satisfies the differential equation $\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0$

Exercise 22.3 | Q 18 | Page 25

Verify that y = log $\left( x + \sqrt{x^2 + a^2} \right)^2$  satisfies the differential equation $\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0$

Exercise 22.3 | Q 19 | Page 25

Show that the differential equation of which $y = 2\left( x^2 - 1 \right) + c e^{- x^2}$  is a solution is $\frac{dy}{dx} + 2xy = 4 x^3$

Exercise 22.3 | Q 20 | Page 25

Show that y = e−x + ax + b is solution of the differential equation$e^x \frac{d^2 y}{d x^2} = 1$

Exercise 22.3 | Q 21.1 | Page 25

For the following differential equation verify that the accompanying function is a solution:

 Differential equation Function $x\frac{dy}{dx} = y$ y = ax
Exercise 22.3 | Q 21.2 | Page 25

For the following differential equation verify that the accompanying function is a solution:

 Differential equation Function $x + y\frac{dy}{dx} = 0$ $y = \pm \sqrt{a^2 - x^2}$
Exercise 22.3 | Q 21.3 | Page 25

For the following differential equation verify that the accompanying function is a solution:

 Differential equation Function $x\frac{dy}{dx} + y = y^2$ $y = \frac{a}{x + a}$
Exercise 22.3 | Q 21.4 | Page 25

For the following differential equation verify that the accompanying function is a solution:

 Differential equation Function $x^3 \frac{d^2 y}{d x^2} = 1$ $y = ax + b + \frac{1}{2x}$
Exercise 22.3 | Q 21.5 | Page 25

For the following differential equation verify that the accompanying function is a solution:

 Differential equation Function $y = \left( \frac{dy}{dx} \right)^2$ $y = \frac{1}{4} \left( x \pm a \right)^2$
Exercise 22.4 [Page 28]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.4 [Page 28]

Exercise 22.4 | Q 1 | Page 28

Differential equation $x\frac{dy}{dx} = 1, y\left( 1 \right) = 0$

Function y = log x

Exercise 22.4 | Q 2 | Page 28

Differential equation $\frac{dy}{dx} = y, y\left( 0 \right) = 1$
Function y = ex

Exercise 22.4 | Q 3 | Page 28

Differential equation $\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1$ Function y = sin x

Exercise 22.4 | Q 4 | Page 28

Differential equation $\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1$

Function y = ex + 1

Exercise 22.4 | Q 5 | Page 28

Differential equation $\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3$ Function y = e−x + 2

Exercise 22.4 | Q 6 | Page 28

Differential equation $\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1$ Function y = sin x + cos x

Exercise 22.4 | Q 7 | Page 28

Differential equation $\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0$ Function y = ex + ex

Exercise 22.4 | Q 8 | Page 28

Differential equation $\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3$ Function y = ex + e2x

Exercise 22.4 | Q 9 | Page 28

Differential equation $\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2$ Function y = xex + ex

Exercise 22.5 [Page 34]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.5 [Page 34]

Exercise 22.5 | Q 1 | Page 34
$\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0$
Exercise 22.5 | Q 2 | Page 34
$\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0$
Exercise 22.5 | Q 3 | Page 34
$\frac{dy}{dx} + 2x = e^{3x}$
Exercise 22.5 | Q 4 | Page 34
$\left( x^2 + 1 \right)\frac{dy}{dx} = 1$
Exercise 22.5 | Q 5 | Page 34
$\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$
Exercise 22.5 | Q 6 | Page 34
$\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7$
Exercise 22.5 | Q 7 | Page 34
$\frac{dy}{dx} = \tan^{- 1} x$

Exercise 22.5 | Q 8 | Page 34
$\frac{dy}{dx} = \log x$
Exercise 22.5 | Q 9 | Page 34
$\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0$
Exercise 22.5 | Q 10 | Page 34
$\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}$
Exercise 22.5 | Q 11 | Page 34

(sin x + cos x) dy + (cos x − sin x) dx = 0

Exercise 22.5 | Q 12 | Page 34
$\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}$
Exercise 22.5 | Q 13 | Page 34
$\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)$
Exercise 22.5 | Q 14 | Page 34
$\sin^4 x\frac{dy}{dx} = \cos x$
Exercise 22.5 | Q 15 | Page 34
$\cos x\frac{dy}{dx} - \cos 2x = \cos 3x$
Exercise 22.5 | Q 16 | Page 34
$\sqrt{1 - x^4} dy = x\ dx$
Exercise 22.5 | Q 17 | Page 34
$\sqrt{a + x} dy + x\ dx = 0$
Exercise 22.5 | Q 18 | Page 34
$\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x$
Exercise 22.5 | Q 19 | Page 34
$\frac{dy}{dx} = x \log x$
Exercise 22.5 | Q 20 | Page 34
$\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x$
Exercise 22.5 | Q 21 | Page 34
$\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x$
Exercise 22.5 | Q 22 | Page 34
$\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1$
Exercise 22.5 | Q 23 | Page 34
$e^\frac{dy}{dx} = x + 1 ; y\left( 0 \right) = 3$
Exercise 22.5 | Q 24 | Page 34

C' (x) = 2 + 0.15 x ; C(0) = 100

Exercise 22.5 | Q 25 | Page 34
$x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0$
Exercise 22.5 | Q 26 | Page 34
$x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0$
Exercise 22.6 [Page 38]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.6 [Page 38]

Exercise 22.6 | Q 1 | Page 38
$\frac{dy}{dx} + \frac{1 + y^2}{y} = 0$
Exercise 22.6 | Q 2 | Page 38
$\frac{dy}{dx} = \frac{1 + y^2}{y^3}$
Exercise 22.6 | Q 3 | Page 38
$\frac{dy}{dx} = \sin^2 y$
Exercise 22.6 | Q 4 | Page 38
$\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}$
Exercise 22.7 [Pages 55 - 57]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.7 [Pages 55 - 57]

Exercise 22.7 | Q 1 | Page 55
$\left( x - 1 \right)\frac{dy}{dx} = 2 xy$
Exercise 22.7 | Q 2 | Page 55

(1 + x2) dy = xy dx

Exercise 22.7 | Q 3 | Page 55
$\frac{dy}{dx} = \left( e^x + 1 \right) y$
Exercise 22.7 | Q 4 | Page 55
$\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y$
Exercise 22.7 | Q 5 | Page 55

xy (y + 1) dy = (x2 + 1) dx

Exercise 22.7 | Q 6 | Page 55
$5\frac{dy}{dx} = e^x y^4$
Exercise 22.7 | Q 7 | Page 55

x cos y dy = (xex log x + ex) dx

Exercise 22.7 | Q 8 | Page 55
$\frac{dy}{dx} = e^{x + y} + x^2 e^y$
Exercise 22.7 | Q 9 | Page 55
$x\frac{dy}{dx} + y = y^2$
Exercise 22.7 | Q 10 | Page 55

(ey + 1) cos x dx + ey sin x dy = 0

Exercise 22.7 | Q 11 | Page 55

x cos2 y  dx = y cos2 x dy

Exercise 22.7 | Q 12 | Page 55

xy dy = (y − 1) (x + 1) dx

Exercise 22.7 | Q 13 | Page 55
$x\frac{dy}{dx} + \cot y = 0$
Exercise 22.7 | Q 14 | Page 55
$\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}$
Exercise 22.7 | Q 15 | Page 55
$\frac{dy}{dx} = e^{x + y} + e^y x^3$
Exercise 22.7 | Q 16 | Page 55
$y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0$
Exercise 22.7 | Q 17 | Page 55
$\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0$
Exercise 22.7 | Q 18 | Page 55
$\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0$
Exercise 22.7 | Q 19 | Page 55
$\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}$
Exercise 22.7 | Q 20 | Page 55
$\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}$
Exercise 22.7 | Q 21 | Page 55

(1 − x2) dy + xy dx = xy2 dx

Exercise 22.7 | Q 22 | Page 55

tan y dx + sec2 y tan x dy = 0

Exercise 22.7 | Q 23 | Page 55

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0

Exercise 22.7 | Q 24 | Page 55

tan y $\frac{dy}{dx}$ = sin (x + y) + sin (x − y)

Exercise 22.7 | Q 25 | Page 55
$\cos x \cos y\frac{dy}{dx} = - \sin x \sin y$
Exercise 22.7 | Q 26 | Page 55
$\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0$
Exercise 22.7 | Q 27 | Page 55
$x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0$
Exercise 22.7 | Q 28 | Page 55

y (1 + ex) dy = (y + 1) ex dx

Exercise 22.7 | Q 29 | Page 55

(y + xy) dx + (x − xy2) dy = 0

Exercise 22.7 | Q 30 | Page 55
$\frac{dy}{dx} = 1 - x + y - xy$
Exercise 22.7 | Q 31 | Page 55

(y2 + 1) dx − (x2 + 1) dy = 0

Exercise 22.7 | Q 32 | Page 55

dy + (x + 1) (y + 1) dx = 0

Exercise 22.7 | Q 33 | Page 55
$\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)$
Exercise 22.7 | Q 34 | Page 55
$\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y$
Exercise 22.7 | Q 35 | Page 55
$\frac{dy}{dx} = e^{x + y} + e^{- x + y}$
Exercise 22.7 | Q 36 | Page 55
$\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y$
Exercise 22.7 | Q 37.1 | Page 55

Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0

Exercise 22.7 | Q 37.2 | Page 55

Solve the following differential equation:
$\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0$

Exercise 22.7 | Q 38.1 | Page 55

Solve the following differential equation:
$xy\frac{dy}{dx} = 1 + x + y + xy$

Exercise 22.7 | Q 38.2 | Page 55

Solve the following differential equation:
$y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)$

Exercise 22.7 | Q 38.3 | Page 55

Solve the following differential equation:
$y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0$

Exercise 22.7 | Q 38.4 | Page 55

Solve the following differential equation:
$\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0$

Exercise 22.7 | Q 39 | Page 56
$\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2$
Exercise 22.7 | Q 40 | Page 56
$2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2$
Exercise 22.7 | Q 41 | Page 56
$xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0$
Exercise 22.7 | Q 42 | Page 56
$\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}$
Exercise 22.7 | Q 43 | Page 56
$\frac{dr}{dt} = - rt, r\left( 0 \right) = r_0$
Exercise 22.7 | Q 44 | Page 56
$\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1$
Exercise 22.7 | Q 45.1 | Page 56
$\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1$
Exercise 22.7 | Q 45.2 | Page 56
$2x\frac{dy}{dx} = 5y, y\left( 1 \right) = 1$
Exercise 22.7 | Q 45.3 | Page 56
$\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1$
Exercise 22.7 | Q 45.4 | Page 56
$\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}$
Exercise 22.7 | Q 45.5 | Page 56
$\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1$
Exercise 22.7 | Q 45.6 | Page 56
$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1$
Exercise 22.7 | Q 45.7 | Page 56
$xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1$
Exercise 22.7 | Q 45.8 | Page 56
$\frac{dy}{dx} = 1 + x + y^2 + x y^2$ when y = 0, x = 0
Exercise 22.7 | Q 45.9 | Page 56
$2\left( y + 3 \right) - xy\frac{dy}{dx} = 0$, y(1) = −2
Exercise 22.7 | Q 46 | Page 56

Solve the differential equation $x\frac{dy}{dx} + \cot y = 0$ given that $y = \frac{\pi}{4}$, when $x=\sqrt{2}$

Exercise 22.7 | Q 47 | Page 56

Solve the differential equation $\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0$, given that y = 1, when x = 0.

Exercise 22.7 | Q 48 | Page 56

Solve the differential equation $\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}$, given that y = 0, when x = 1.

Exercise 22.7 | Q 49 | Page 56

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.

Exercise 22.7 | Q 50 | Page 56

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = $\frac{\pi}{2}$, when x = $\frac{\pi}{2}$

Exercise 22.7 | Q 51 | Page 56

Find the particular solution of the differential equation $\frac{dy}{dx} = - 4x y^2$  given that y = 1, when x = 0.

Exercise 22.7 | Q 52 | Page 56

Find the equation of a curve passing through the point (0, 0) and whose differential equation is $\frac{dy}{dx} = e^x \sin x$

Exercise 22.7 | Q 53 | Page 56

For the differential equation xy $\frac{dy}{dx}$ = (x + 2) (y + 2). Find the solution curve passing through the point (1, −1).

Exercise 22.7 | Q 54 | Page 56

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.

Exercise 22.7 | Q 55 | Page 56

In a bank principal increases at the rate of r% per year. Find the value of r if â‚¹100 double itself in 10 years (loge 2 = 0.6931).

Exercise 22.7 | Q 56 | Page 56

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).

Exercise 22.7 | Q 57 | Page 57

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.

Exercise 22.7 | Q 58 | Page 57

If y(x) is a solution of the different equation $\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x$ and y(0) = 1, then find the value of y(π/2).

Exercise 22.7 | Q 59 | Page 57

Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.

Exercise 22.8 [Page 66]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.8 [Page 66]

Exercise 22.8 | Q 1 | Page 66
$\frac{dy}{dx} = \left( x + y + 1 \right)^2$
Exercise 22.8 | Q 2 | Page 66
$\frac{dy}{dx}\cos\left( x - y \right) = 1$
Exercise 22.8 | Q 3 | Page 66
$\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}$
Exercise 22.8 | Q 4 | Page 66
$\frac{dy}{dx} = \left( x + y \right)^2$
Exercise 22.8 | Q 5 | Page 66
$\left( x + y \right)^2 \frac{dy}{dx} = 1$
Exercise 22.8 | Q 6 | Page 66
$\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}$
Exercise 22.8 | Q 7 | Page 66
$\frac{dy}{dx} = \sec\left( x + y \right)$
Exercise 22.8 | Q 8 | Page 66
$\frac{dy}{dx} = \tan\left( x + y \right)$
Exercise 22.8 | Q 9 | Page 66

(x + y) (dx − dy) = dx + dy

Exercise 22.8 | Q 10 | Page 66
$\left( x + y + 1 \right)\frac{dy}{dx} = 1$
Exercise 22.8 | Q 11 | Page 66
$\frac{dy}{dx} + 1 = e^{x + y}$
Exercise 22.9 [Pages 83 - 84]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.9 [Pages 83 - 84]

Exercise 22.9 | Q 1 | Page 83

x2 dy + y (x + y) dx = 0

Exercise 22.9 | Q 2 | Page 83
$\frac{dy}{dx} = \frac{y - x}{y + x}$
Exercise 22.9 | Q 3 | Page 83
$\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}$
Exercise 22.9 | Q 4 | Page 83
$x\frac{dy}{dx} = x + y$
Exercise 22.9 | Q 5 | Page 83

(x2 − y2) dx − 2xy dy = 0

Exercise 22.9 | Q 6 | Page 83
$\frac{dy}{dx} = \frac{x + y}{x - y}$
Exercise 22.9 | Q 7 | Page 83
$2xy\frac{dy}{dx} = x^2 + y^2$
Exercise 22.9 | Q 8 | Page 83
$x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy$
Exercise 22.9 | Q 9 | Page 83
$xy\frac{dy}{dx} = x^2 - y^2$
Exercise 22.9 | Q 10 | Page 83

y ex/y dx = (xex/y + y) dy

Exercise 22.9 | Q 11 | Page 83

$x^2 \frac{dy}{dx} = x^2 + xy + y^2$

Exercise 22.9 | Q 12 | Page 83

(y2 − 2xy) dx = (x2 − 2xy) dy

Exercise 22.9 | Q 13 | Page 83

2xy dx + (x2 + 2y2) dy = 0

Exercise 22.9 | Q 14 | Page 83

3x2 dy = (3xy + y2) dx

Exercise 22.9 | Q 15 | Page 83
$\frac{dy}{dx} = \frac{x}{2y + x}$
Exercise 22.9 | Q 16 | Page 83

(x + 2y) dx − (2x − y) dy = 0

Exercise 22.9 | Q 17 | Page 83
$\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}$
Exercise 22.9 | Q 18 | Page 83

Solve the following differential equations:
$\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}$

Exercise 22.9 | Q 19 | Page 83

$\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)$

Exercise 22.9 | Q 20 | Page 83

y2 dx + (x2 − xy + y2) dy = 0

Exercise 22.9 | Q 21 | Page 83
$\left[ x\sqrt{x^2 + y^2} - y^2 \right] dx + xy\ dy = 0$
Exercise 22.9 | Q 22 | Page 83
$x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)$
Exercise 22.9 | Q 23 | Page 83
$\frac{y}{x}\cos\left( \frac{y}{x} \right) dx - \left\{ \frac{x}{y}\sin\left( \frac{y}{x} \right) + \cos\left( \frac{y}{x} \right) \right\} dy = 0$
Exercise 22.9 | Q 24 | Page 83
$xy \log\left( \frac{x}{y} \right) dx + \left\{ y^2 - x^2 \log\left( \frac{x}{y} \right) \right\} dy = 0$
Exercise 22.9 | Q 25 | Page 83
$\left( 1 + e^{x/y} \right) dx + e^{x/y} \left( 1 - \frac{x}{y} \right) dy = 0$
Exercise 22.9 | Q 26 | Page 83
$\left( x^2 + y^2 \right)\frac{dy}{dx} = 8 x^2 - 3xy + 2 y^2$
Exercise 22.9 | Q 27 | Page 83

(x2 − 2xy) dy + (x2 − 3xy + 2y2) dx = 0

Exercise 22.9 | Q 28 | Page 83
$x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)$
Exercise 22.9 | Q 29 | Page 83
$x\frac{dy}{dx} - y = 2\sqrt{y^2 - x^2}$
Exercise 22.9 | Q 30 | Page 83
$x \cos\left( \frac{y}{x} \right) \cdot \left( y dx + x dy \right) = y \sin\left( \frac{y}{x} \right) \cdot \left( x dy - y dx \right)$
Exercise 22.9 | Q 31 | Page 83

(x2 + 3xy + y2) dx − x2 dy = 0

Exercise 22.9 | Q 32 | Page 83
$\left( x - y \right)\frac{dy}{dx} = x + 2y$
Exercise 22.9 | Q 33 | Page 84

(2x2 y + y3) dx + (xy2 − 3x3) dy = 0

Exercise 22.9 | Q 34 | Page 84
$x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0$
Exercise 22.9 | Q 35 | Page 84
$y dx + \left\{ x \log\left( \frac{y}{x} \right) \right\} dy - 2x dy = 0$
Exercise 22.9 | Q 36.1 | Page 84

Solve the following initial value problem:
(x2 + y2) dx = 2xy dy, y (1) = 0

Exercise 22.9 | Q 36.2 | Page 84

Solve the following initial value problem:
$x e^{y/x} - y + x\frac{dy}{dx} = 0, y\left( e \right) = 0$

Exercise 22.9 | Q 36.3 | Page 84

Solve the following initial value problem:
$\frac{dy}{dx} - \frac{y}{x} + cosec\frac{y}{x} = 0, y\left( 1 \right) = 0$

Exercise 22.9 | Q 36.4 | Page 84

Solve the following initial value problem:
(xy − y2) dx − x2 dy = 0, y(1) = 1

Exercise 22.9 | Q 36.5 | Page 84

Solve the following initial value problem:
$\frac{dy}{dx} = \frac{y\left( x + 2y \right)}{x\left( 2x + y \right)}, y\left( 1 \right) = 2$

Exercise 22.9 | Q 36.6 | Page 84

Solve the following initial value problem:
(y4 − 2x3 y) dx + (x4 − 2xy3) dy = 0, y (1) = 1

Exercise 22.9 | Q 36.7 | Page 84

Solve the following initial value problem:
x (x2 + 3y2) dx + y (y2 + 3x2) dy = 0, y (1) = 1

Exercise 22.9 | Q 36.8 | Page 84

Solve the following initial value problem:
$\left\{ x \sin^2 \left( \frac{y}{x} \right) - y \right\}dx + x dy = 0, y\left( 1 \right) = \frac{\pi}{4}$

Exercise 22.9 | Q 36.9 | Page 84

Solve the following initial value problem:
$x\frac{dy}{dx} - y + x \sin\left( \frac{y}{x} \right) = 0, y\left( 2 \right) = x$

Exercise 22.9 | Q 37 | Page 84

Find the particular solution of the differential equation x cos$\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x$, given that when x = 1, $y = \frac{\pi}{4}$

Exercise 22.9 | Q 38 | Page 84

Find the particular solution of the differential equation $\left( x - y \right)\frac{dy}{dx} = x + 2y$, given that when x = 1, y = 0.

Exercise 22.9 | Q 39 | Page 84

Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$ given that y = 1 when x = 0.

Exercise 22.9 | Q 40 | Page 84

Show that the family of curves for which $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$, is given by $x^2 - y^2 = Cx$

Exercise 22.1 [Pages 106 - 108]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.1 [Pages 106 - 108]

Exercise 22.1 | Q 1 | Page 106
$\frac{dy}{dx} + 2y = e^{3x}$
Exercise 22.1 | Q 2 | Page 106
$4\frac{dy}{dx} + 8y = 5 e^{- 3x}$
Exercise 22.1 | Q 3 | Page 106
$\frac{dy}{dx} + 2y = 6 e^x$
Exercise 22.1 | Q 4 | Page 106
$\frac{dy}{dx} + y = e^{- 2x}$
Exercise 22.1 | Q 5 | Page 106
$x\frac{dy}{dx} = x + y$
Exercise 22.1 | Q 6 | Page 106
$\frac{dy}{dx} + 2y = 4x$
Exercise 22.1 | Q 7 | Page 106
$x\frac{dy}{dx} + y = x e^x$
Exercise 22.1 | Q 8 | Page 106
$\frac{dy}{dx} + \frac{4x}{x^2 + 1}y + \frac{1}{\left( x^2 + 1 \right)^2} = 0$
Exercise 22.1 | Q 9 | Page 106
$x\frac{dy}{dx} + y = x \log x$
Exercise 22.1 | Q 10 | Page 106
$x\frac{dy}{dx} - y = \left( x - 1 \right) e^x$
Exercise 22.1 | Q 11 | Page 106
$\frac{dy}{dx} + \frac{y}{x} = x^3$
Exercise 22.1 | Q 12 | Page 106
$\frac{dy}{dx} + y = \sin x$
Exercise 22.1 | Q 13 | Page 106
$\frac{dy}{dx} + y = \cos x$
Exercise 22.1 | Q 14 | Page 106
$\frac{dy}{dx} + 2y = \sin x$
Exercise 22.1 | Q 15 | Page 106

$\frac{dy}{dx}$ = y tan x − 2 sin x

Exercise 22.1 | Q 16 | Page 106
$\left( 1 + x^2 \right)\frac{dy}{dx} + y = \tan^{- 1} x$
Exercise 22.1 | Q 17 | Page 106

$\frac{dy}{dx}$ + y tan x = cos x

Exercise 22.1 | Q 18 | Page 106

$\frac{dy}{dx}$ + y cot x = x2 cot x + 2x

Exercise 22.1 | Q 19 | Page 106
$\frac{dy}{dx} + y \tan x = x^2 \cos^2 x$
Exercise 22.1 | Q 20 | Page 106
$\left( 1 + x^2 \right)\frac{dy}{dx} + y = e^{tan^{- 1} x}$
Exercise 22.1 | Q 21 | Page 106

x dy = (2y + 2x4 + x2) dx

Exercise 22.1 | Q 22 | Page 106
$\left( 1 + y^2 \right) + \left( x - e^{tan^{- 1} y} \right)\frac{dy}{dx} = 0$
Exercise 22.1 | Q 23 | Page 106
$y^2 \frac{dx}{dy} + x - \frac{1}{y} = 0$

Exercise 22.1 | Q 24 | Page 106
$\left( 2x - 10 y^3 \right)\frac{dy}{dx} + y = 0$
Exercise 22.1 | Q 25 | Page 106

(x + tan y) dy = sin 2y dx

Exercise 22.1 | Q 26 | Page 106

dx + xdy = e−y sec2 y dy

Exercise 22.1 | Q 27 | Page 106

$\frac{dy}{dx}$ = y tan x − 2 sin x

Exercise 22.1 | Q 28 | Page 106

$\frac{dy}{dx}$ + y cos x = sin x cos x

Exercise 22.1 | Q 29 | Page 106

Solve the following differential equation:-
$\left( 1 + x^2 \right)\frac{dy}{dx} - 2xy = \left( x^2 + 2 \right)\left( x^2 + 1 \right)$

Exercise 22.1 | Q 30 | Page 106
$\left( \sin x \right)\frac{dy}{dx} + y \cos x = 2 \sin^2 x \cos x$
Exercise 22.1 | Q 31 | Page 106
$\left( x^2 - 1 \right)\frac{dy}{dx} + 2\left( x + 2 \right)y = 2\left( x + 1 \right)$
Exercise 22.1 | Q 32 | Page 106
$x\frac{dy}{dx} + 2y = x \cos x$
Exercise 22.1 | Q 33 | Page 106
$\frac{dy}{dx} - y = x e^x$
Exercise 22.1 | Q 34 | Page 106
$\frac{dy}{dx} + 2y = x e^{4x}$
Exercise 22.1 | Q 35 | Page 106

Solve the differential equation $\left( x + 2 y^2 \right)\frac{dy}{dx} = y$, given that when x = 2, y = 1.

Exercise 22.1 | Q 36.01 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$\frac{dy}{dx} + 3y = e^{mx}$, m is a given real number.

Exercise 22.1 | Q 36.02 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$\frac{dy}{dx} - y = \cos 2x$

Exercise 22.1 | Q 36.03 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x}$

Exercise 22.1 | Q 36.04 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$x\frac{dy}{dx} + y = x^4$

Exercise 22.1 | Q 36.05 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$\left( x \log x \right)\frac{dy}{dx} + y = \log x$

Exercise 22.1 | Q 36.06 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$\frac{dy}{dx} - \frac{2xy}{1 + x^2} = x^2 + 2$

Exercise 22.1 | Q 36.07 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$\frac{dy}{dx} + y \cos x = e^{\sin x} \cos x$

Exercise 22.1 | Q 36.08 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$\left( x + y \right)\frac{dy}{dx} = 1$

Exercise 22.1 | Q 36.09 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$\frac{dy}{dx} \cos^2 x = \tan x - y$

Exercise 22.1 | Q 36.1 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$e^{- y} \sec^2 y dy = dx + x dy$

Exercise 22.1 | Q 36.11 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$x \log x\frac{dy}{dx} + y = 2 \log x$

Exercise 22.1 | Q 36.12 | Page 107

Find one-parameter families of solution curves of the following differential equation:-

$x\frac{dy}{dx} + 2y = x^2 \log x$

Exercise 22.1 | Q 37.01 | Page 107

Solve the following initial value problem:-

$y' + y = e^x , y\left( 0 \right) = \frac{1}{2}$

Exercise 22.1 | Q 37.02 | Page 107

Solve the following initial value problem:-
$x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0$

Exercise 22.1 | Q 37.03 | Page 107

Solve the following initial value problem:-

$\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0$

Exercise 22.1 | Q 37.04 | Page 107

Solve the following initial value problem:-

$x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0$

Exercise 22.1 | Q 37.05 | Page 107

Solve the following initial value problem:-

$\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0$

Exercise 22.1 | Q 37.06 | Page 107

Solve the following initial value problem:-

$\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1$

Exercise 22.1 | Q 37.07 | Page 107

Solve the following initial value problem:
$x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1$

Exercise 22.1 | Q 37.08 | Page 107

Solve the following initial value problem:
$\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0$

Exercise 22.1 | Q 37.09 | Page 107

Solve the following initial value problem:-

$\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}$

Exercise 22.1 | Q 37.1 | Page 107

Solve the following initial value problem:-

$\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}$

Exercise 22.1 | Q 37.11 | Page 107

Solve the following initial value problem:-

$\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0$

Exercise 22.1 | Q 37.12 | Page 107

Solve the following initial value problem:-

$dy = \cos x\left( 2 - y\text{ cosec }x \right)dx$

Exercise 22.1 | Q 37.13 | Page 107

Solve the following initial value problem:-
$\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0$ given that y = 0 when $x = \frac{\pi}{2}$

Exercise 22.1 | Q 38 | Page 107

Find the general solution of the differential equation $x\frac{dy}{dx} + 2y = x^2$

Exercise 22.1 | Q 39 | Page 107

Find the general solution of the differential equation $\frac{dy}{dx} - y = \cos x$

Exercise 22.1 | Q 40 | Page 107

Solve the differential equation $\left( y + 3 x^2 \right)\frac{dx}{dy} = x$

Exercise 22.1 | Q 41 | Page 108

Find the particular solution of the differential equation $\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, y ≠ 0$ given that x = 0 when $y = \frac{\pi}{2}$.

Exercise 22.1 | Q 42 | Page 108

Solve the following differential equation:- $\left( \cot^{- 1} y + x \right) dy = \left( 1 + y^2 \right) dx$

Exercise 22.11 [Pages 134 - 136]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Exercise 22.11 [Pages 134 - 136]

Exercise 22.11 | Q 1 | Page 134

The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.

Exercise 22.11 | Q 2 | Page 134

A population grows at the rate of 5% per year. How long does it take for the population to double?

Exercise 22.11 | Q 3 | Page 134

The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?

Exercise 22.11 | Q 4 | Page 134

In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?

Exercise 22.11 | Q 5 | Page 134

If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?

Exercise 22.11 | Q 6 | Page 134

The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.

Exercise 22.11 | Q 7 | Page 134

The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?

Exercise 22.11 | Q 8 | Page 134

If the marginal cost of manufacturing a certain item is given by C' (x) = $\frac{dC}{dx}$ = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

Exercise 22.11 | Q 9 | Page 134

A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.

Exercise 22.11 | Q 10 | Page 134

In a simple circuit of resistance R, self inductance L and voltage E, the current i at any time t is given by L $\frac{di}{dt}$+ R i = E. If E is constant and initially no current passes through the circuit, prove that $i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.$

Exercise 22.11 | Q 11 | Page 134

The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.

Exercise 22.11 | Q 12 | Page 134

Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?

Exercise 22.11 | Q 13 | Page 135

The slope of the tangent at a point P (x, y) on a curve is $\frac{- x}{y}$. If the curve passes through the point (3, −4), find the equation of the curve.

Exercise 22.11 | Q 14 | Page 135

Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
$y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}$

Exercise 22.11 | Q 15 | Page 135

Find the equation of the curve passing through the point $\left( 1, \frac{\pi}{4} \right)$  and tangent at any point of which makes an angle tan−1  $\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)$ with x-axis.

Exercise 22.11 | Q 16 | Page 135

Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.

Exercise 22.11 | Q 17 | Page 135

Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.

Exercise 22.11 | Q 18 | Page 135

The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).

Exercise 22.11 | Q 19 | Page 135

Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).

Exercise 22.11 | Q 20 | Page 135

Find the equation to the curve satisfying x (x + 1) $\frac{dy}{dx} - y$  = x (x + 1) and passing through (1, 0).

Exercise 22.11 | Q 21 | Page 135

Find the equation of the curve which passes through the point (3, −4) and has the slope $\frac{2y}{x}$  at any point (x, y) on it.

Exercise 22.11 | Q 22 | Page 135

Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.

Exercise 22.11 | Q 23 | Page 135

At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.

Exercise 22.11 | Q 24 | Page 135

A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is $y^2 - 2xy\frac{dy}{dx} - x^2 = 0$, and hence find the curve.

Exercise 22.11 | Q 25 | Page 135

Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.

Exercise 22.11 | Q 26 | Page 135

The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.

Exercise 22.11 | Q 27 | Page 135

The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.

Exercise 22.11 | Q 28 | Page 135

Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?

Exercise 22.11 | Q 29 | Page 135

Show that all curves for which the slope at any point (x, y) on it is $\frac{x^2 + y^2}{2xy}$  are rectangular hyperbola.

Exercise 22.11 | Q 30 | Page 136

The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.

Exercise 22.11 | Q 31 | Page 136

Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.

Exercise 22.11 | Q 32 | Page 136

The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).

Exercise 22.11 | Q 33 | Page 136

Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.

Exercise 22.11 | Q 34 | Page 136

The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).

Very Short Answers [Pages 137 - 139]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Very Short Answers [Pages 137 - 139]

Very Short Answers | Q 1 | Page 137

Define a differential equation.

Very Short Answers | Q 2 | Page 137

Define order of a differential equation.

Very Short Answers | Q 3 | Page 137

Define degree of a differential equation.

Very Short Answers | Q 4 | Page 137

Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.

Very Short Answers | Q 5 | Page 137

Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.

Very Short Answers | Q 6 | Page 138

Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.

Very Short Answers | Q 7 | Page 138

Write the degree of the differential equation
$a^2 \frac{d^2 y}{d x^2} = \left\{ 1 + \left( \frac{dy}{dx} \right)^2 \right\}^{1/4}$

Very Short Answers | Q 8 | Page 138

Write the order of the differential equation
$1 + \left( \frac{dy}{dx} \right)^2 = 7 \left( \frac{d^2 y}{d x^2} \right)^3$

Very Short Answers | Q 9 | Page 138

Write the order and degree of the differential equation
$y = x\frac{dy}{dx} + a\sqrt{1 + \left( \frac{dy}{dx} \right)^2}$

Very Short Answers | Q 10 | Page 138

Write the degree of the differential equation
$\frac{d^2 y}{d x^2} + x \left( \frac{dy}{dx} \right)^2 = 2 x^2 \log \left( \frac{d^2 y}{d x^2} \right)$

Very Short Answers | Q 11 | Page 138

Write the order of the differential equation of the family of circles touching X-axis at the origin.

Very Short Answers | Q 12 | Page 138

Write the order of the differential equation of all non-horizontal lines in a plane.

Very Short Answers | Q 13 | Page 138

If sin x is an integrating factor of the differential equation $\frac{dy}{dx} + Py = Q$, then write the value of P.

Very Short Answers | Q 15 | Page 138

Write the order of the differential equation whose solution is y = a cos x + b sin x + c e−x.

Very Short Answers | Q 16 | Page 138

Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.

Very Short Answers | Q 17 | Page 138

What is the degree of the following differential equation?

$5x \left( \frac{dy}{dx} \right)^2 - \frac{d^2 y}{d x^2} - 6y = \log x$
Very Short Answers | Q 18 | Page 138

Write the degree of the differential equation $\left( \frac{dy}{dx} \right)^4 + 3x\frac{d^2 y}{d x^2} = 0$

Very Short Answers | Q 19 | Page 138

Write the degree of the differential equation x $\left( \frac{d^2 y}{d x^2} \right)^3 + y \left( \frac{dy}{dx} \right)^4 + x^3 = 0$

Very Short Answers | Q 20 | Page 138

Write the differential equation representing family of curves y = mx, where m is arbitrary constant.

Very Short Answers | Q 21 | Page 138

Write the degree of the differential equation $x^3 \left( \frac{d^2 y}{d x^2} \right)^2 + x \left( \frac{dy}{dx} \right)^4 = 0$

Very Short Answers | Q 22 | Page 138

Write the degree of the differential equation $\left( 1 + \frac{dy}{dx} \right)^3 = \left( \frac{d^2 y}{d x^2} \right)^2$

Very Short Answers | Q 23 | Page 138

Write the degree of the differential equation $\frac{d^2 y}{d x^2} + 3 \left( \frac{dy}{dx} \right)^2 = x^2 \log\left( \frac{d^2 y}{d x^2} \right)$

Very Short Answers | Q 24 | Page 139

Write the degree of the differential equation $\left( \frac{d^2 y}{d x^2} \right)^2 + \left( \frac{dy}{dx} \right)^2 = x\sin\left( \frac{dy}{dx} \right)$

Very Short Answers | Q 25 | Page 139

Write the order and degree of the differential equation
$\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^\frac{1}{4} + x^\frac{1}{5} = 0$

Very Short Answers | Q 26 | Page 139

The degree of the differential equation $\frac{d^2 y}{d x^2} + e^\frac{dy}{dx} = 0$

Very Short Answers | Q 27 | Page 139

How many arbitrary constants are there in the general solution of the differential equation of order 3.

Very Short Answers | Q 28 | Page 139

Write the order of the differential equation representing the family of curves y = ax + a3.

Very Short Answers | Q 29 | Page 139

Find the sum of the order and degree of the differential equation
$y = x \left( \frac{dy}{dx} \right)^3 + \frac{d^2 y}{d x^2}$

Very Short Answers | Q 30 | Page 139

Find the solution of the differential equation
$x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0$

MCQ [Pages 139 - 144]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations MCQ [Pages 139 - 144]

MCQ | Q 1 | Page 139

The integrating factor of the differential equation (x log x)
$\frac{dy}{dx} + y = 2 \log x$, is given by

• log (log x)

• ex

• log x

• x

MCQ | Q 2 | Page 139

The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is

• log y = kx

• y = kx

• xy = k

• y = k log x

MCQ | Q 3 | Page 139

Integrating factor of the differential equation cos $x\frac{dy}{dx} + y$ sin x = 1, is

• sin x

• sec x

• tan x

• cos x

MCQ | Q 4 | Page 139

The degree of the differential equation $\left( \frac{d^2 y}{d x^2} \right)^2 - \left( \frac{dy}{dx} \right) = y^3$, is

• 1/2

• 2

• 3

• 4

MCQ | Q 5 | Page 140

The degree of the differential equation $\left\{ 5 + \left( \frac{dy}{dx} \right)^2 \right\}^{5/3} = x^5 \left( \frac{d^2 y}{d x^2} \right)$, is

• 4

• 3

• 5

• 10

MCQ | Q 6 | Page 140

The general solution of the differential equation $\frac{dy}{dx} + y$ cot x = cosec x, is

• x + y sin x = C

• x + y cos x = C

• y + x (sin x + cos x) = C

• y sin x = x + C

MCQ | Q 7 | Page 140

The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is

• y" + y' = 0

• y" − ω2 y = 0

• y" = −ω2 y

• y" + y = 0

MCQ | Q 8 | Page 140

The equation of the curve whose slope is given by $\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0$ and which passes through the point (1, 1) is

• x2 = y

• y2 = x

• x2 = 2y

• y2 = 2x

MCQ | Q 9 | Page 140

The order of the differential equation whose general solution is given by y = c1 cos (2x + c2) − (c3 + c4) ax + c5 + c6 sin (x − c7) is

• 3

• 4

• 5

• 2

MCQ | Q 10 | Page 140

The solution of the differential equation $\frac{dy}{dx} = \frac{ax + g}{by + f}$ represents a circle when

• a = b

• a = −b

• a = −2b

• a = 2b

MCQ | Q 11 | Page 140

The solution of the differential equation $\frac{dy}{dx} + \frac{2y}{x} = 0$ with y(1) = 1 is given by

• $y = \frac{1}{x^2}$

• $x = \frac{1}{y^2}$

• $x = \frac{1}{y}$

• $y = \frac{1}{x}$

MCQ | Q 12 | Page 140

The solution of the differential equation $\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0$ is given by

• y = xex + C

• x = yex

• y = x + C

• xy = ex + C

MCQ | Q 13 | Page 140

The order of the differential equation satisfying
$\sqrt{1 - x^4} + \sqrt{1 - y^4} = a\left( x^2 - y^2 \right)$ is

• 1

• 2

• 3

• 4

MCQ | Q 14 | Page 140

The solution of the differential equation y1 y3 = y22 is

• x = C1 eC2y + C3

• y = C1 eC2x + C3

• 2x = C1 eC2y + C3

• none of these

MCQ | Q 15 | Page 140

The general solution of the differential equation $\frac{dy}{dx} + y$ g' (x) = g (x) g' (x), where g (x) is a given function of x, is

• g (x) + log {1 + y + g (x)} = C

• g (x) + log {1 + y − g (x)} = C

• g (x) − log {1 + y − g (x)} = C

• none of these

MCQ | Q 16 | Page 140

The solution of the differential equation $\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0$ is

• $y^2 = \exp\left( x + \frac{x^2}{2} \right) - 1$

• $y^2 = 1 + C \exp\left( x + \frac{x^2}{2} \right)$

• y = tan (C + x + x2)

• $y = \tan\left( x + \frac{x^2}{2} \right)$

MCQ | Q 17 | Page 141

The differential equation of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = C$ is

• $\frac{y "}{y'} + \frac{y'}{y} - \frac{1}{x} = 0$

• $\frac{y "}{y'} + \frac{y'}{y} + \frac{1}{x} = 0$

• $\frac{y "}{y'} - \frac{y'}{y} - \frac{1}{x} = 0$

• none of these

MCQ | Q 18 | Page 141

Solution of the differential equation $\frac{dy}{dx} + \frac{y}{x}=\sin x$ is

• x (y + cos x) = sin x + C

• x (y − cos x) = sin x + C

• x (y + cos x) = cos x + C

• none of these

MCQ | Q 19 | Page 141

The equation of the curve satisfying the differential equation y (x + y3) dx = x (y3 − x) dy and passing through the point (1, 1) is

• y3 − 2x + 3x2 y = 0

• y3 + 2x + 3x2 y = 0

• y3 + 2x −3x2 y = 0

• none of these

MCQ | Q 20 | Page 141

The solution of the differential equation $2x\frac{dy}{dx} - y = 3$ represents

• circles

• straight lines

• ellipses

• parabolas

MCQ | Q 21 | Page 141

The solution of the differential equation $x\frac{dy}{dx} = y + x \tan\frac{y}{x}$, is

• $\sin\frac{x}{y} = x + C$

• $\sin\frac{y}{x} = Cx$

• $\sin\frac{x}{y} = Cy$

• $\sin\frac{y}{x} = Cy$

MCQ | Q 22 | Page 141

The differential equation satisfied by ax2 + by2 = 1 is

• xyy2 + y12 + yy1 = 0

• xyy2 + xy12 − yy1 = 0

• xyy2 − xy12 + yy1 = 0

• none of these

MCQ | Q 23 | Page 141

The differential equation which represents the family of curves y = eCx is

• y1 = C2 y

• xy1 − ln y = 0

• x ln y = yy1

• y ln y = xy1

MCQ | Q 24 | Page 141

Which of the following transformations reduce the differential equation $\frac{dz}{dx} + \frac{z}{x}\log z = \frac{z}{x^2} \left( \log z \right)^2$ into the form $\frac{du}{dx} + P\left( x \right) u = Q\left( x \right)$

• u = log x

• u = ez

• u = (log z)−1

• u = (log z)2

MCQ | Q 25 | Page 141

The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}$ is

• $\phi\left( \frac{y}{x} \right) = kx$

• $x\phi\left( \frac{y}{x} \right) = k$

• $\phi\left( \frac{y}{x} \right) = ky$

• $y\phi\left( \frac{y}{x} \right) = k$

MCQ | Q 26 | Page 141

If m and n are the order and degree of the differential equation $\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1$, then

• m = 3, n = 3

• m = 3, n = 2

• m = 3, n = 5

• m = 3, n = 1

MCQ | Q 27 | Page 142

The solution of the differential equation $\frac{dy}{dx} + 1 = e^{x + y}$, is

• (x + y) ex + y = 0

• (x + C) ex + y = 0

• (x − C) ex + y = 1

• (x − C) ex + y + 1 =0

MCQ | Q 28 | Page 142

The solution of x2 + y $\frac{dy}{dx}$= 4, is

• x2 + y2 = 12x + C

• x2 + y2 = 3x + C

• x3 + y3 = 3x + C

• x3 + y3 = 12x + C

MCQ | Q 29 | Page 142

The family of curves in which the sub tangent at any point of a curve is double the abscissae, is given by

• x = Cy2

• y = Cx2

• x2 = Cy2

• y = Cx

MCQ | Q 30 | Page 142

The solution of the differential equation x dx + y dy = x2 y dy − y2 x dx, is

• x2 − 1 = C (1 + y2)

• x2 + 1 = C (1 − y2)

• x3 − 1 = C (1 + y3)

• x3 + 1 = C (1 − y3)

MCQ | Q 31 | Page 142

The solution of the differential equation (x2 + 1) $\frac{dy}{dx}$ + (y2 + 1) = 0, is

• y = 2 + x2

• $y = \frac{1 + x}{1 - x}$

• y = x (x − 1)

• $y = \frac{1 - x}{1 + x}$

MCQ | Q 32 | Page 142

The differential equation $x\frac{dy}{dx} - y = x^2$, has the general solution

• y − x3 = 2cx

• 2y − x3 = cx

• 2y + x2 = 2cx

• y + x2 = 2cx

MCQ | Q 33 | Page 142

The solution of the differential equation $\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1$ approaches to zero when x → ∞, if

• k = 0

• k > 0

• k < 0

• none of these

MCQ | Q 34 | Page 142

The solution of the differential equation $\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0$, is

• tan1 x − tan−1 y = tan−1 C

• tan−1 y − tan−1 x = tan−1 C

• tan−1 y ± tan−1 x = tan C

• tan−1 y + tan−1 x = tan−1 C

MCQ | Q 35 | Page 142

The solution of the differential equation $\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}$, is

• $\tan^{- 1} \left( \frac{x}{y} \right) = \log y + C$

• $\tan^{- 1} \left( \frac{y}{x} \right) = \log x + C$

• $\tan^{- 1} \left( \frac{x}{y} \right) = \log x + C$

• $\tan^{- 1} \left( \frac{y}{x} \right) = \log y + C$

MCQ | Q 36 | Page 142

The differential equation
$\frac{dy}{dx} + Py = Q y^n , n > 2$ can be reduced to linear form by substituting

• z = yn −1

• z = yn

• z = yn + 1

• z = y1 − n

MCQ | Q 37 | Page 142

If p and q are the order and degree of the differential equation $y\frac{dy}{dx} + x^3 \frac{d^2 y}{d x^2} + xy$ = cos x, then

• p < q

• p = q

• p > q

• none of these

MCQ | Q 38 | Page 143

Which of the following is the integrating factor of (x log x) $\frac{dy}{dx} + y$ = 2 log x?

• x

• ex

• log x

• log (log x)

MCQ | Q 39 | Page 143

What is integrating factor of $\frac{dy}{dx}$ + y sec x = tan x?

• sec x + tan x

• log (sec x + tan x)

• esec x

• sec x

MCQ | Q 40 | Page 143

Integrating factor of the differential equation cos $x\frac{dy}{dx} + y \sin x = 1$, is

• cos x

• tan x

• sec x

• sin x

MCQ | Q 41 | Page 143

The degree of the differential equation $\left( \frac{d^2 y}{d x^2} \right)^3 + \left( \frac{dy}{dx} \right)^2 + \sin\left( \frac{dy}{dx} \right) + 1 = 0$, is

• 3

• 2

• 1

• not defined

MCQ | Q 42 | Page 143

The order of the differential equation $2 x^2 \frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + y = 0$, is

• 2

• 1

• 0

• not defined

MCQ | Q 43 | Page 143

The number of arbitrary constants in the general solution of differential equation of fourth order is

• 0

• 2

• 3

• 4

MCQ | Q 44 | Page 143

The number of arbitrary constants in the particular solution of a differential equation of third order is

• 3

• 2

• 1

• 0

MCQ | Q 45 | Page 143

Which of the following differential equations has y = C1 ex + C2 ex as the general solution?

• $\frac{d^2 y}{d x^2} + y = 0$

• $\frac{d^2 y}{d x^2} - y = 0$

• $\frac{d^2 y}{d x^2} + 1 = 0$

• $\frac{d^2 y}{d x^2} - 1 = 0$

MCQ | Q 46 | Page 143

Which of the following differential equations has y = x as one of its particular solution?

• $\frac{d^2 y}{d x^2} - x^2 \frac{dy}{dx} + xy = x$

• $\frac{d^2 y}{d x^2} + x\frac{dy}{dx} + xy = x$

• $\frac{d^2 y}{d x^2} - x^2 \frac{dy}{dx} + xy = 0$

• $\frac{d^2 y}{d x^2} + x\frac{dy}{dx} + xy = 0$

MCQ | Q 47 | Page 143

The general solution of the differential equation $\frac{dy}{dx} = e^{x + y}$, is

• ex + e−y = C

• ex + ey = C

• ex + ey = C

• e−x + e−y = C

MCQ | Q 48 | Page 143

A homogeneous differential equation of the form $\frac{dx}{dy} = h\left( \frac{x}{y} \right)$ can be solved by making the substitution

• y = vx

• v = yx

• x = vy

• x = v

MCQ | Q 49 | Page 143

Which of the following is a homogeneous differential equation?

• (4x + 6y + 5) dy − (3y + 2x + 4) dx = 0

• xy dx − (x3 + y3) dy = 0

• (x3 + 2y2) dx + 2xy dy = 0

• y2 dx + (x2 − xy − y2) dy = 0

MCQ | Q 50 | Page 143

The integrating factor of the differential equation $x\frac{dy}{dx} - y = 2 x^2$

• e−x

• ey

• $\frac{1}{x}$

• x

MCQ | Q 51 | Page 144

The integrating factor of the differential equation $\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)$ is

• $\frac{1}{y^2 - 1}$

• $\frac{1}{\sqrt{y^2 - 1}}$

• $\frac{1}{1 - y^2}$

• $\frac{1}{\sqrt{1 - y^2}}$

MCQ | Q 52 | Page 144

The general solution of the differential equation $\frac{y dx - x dy}{y} = 0$, is

• xy = C

• x = Cy2

• y = Cx

• y = Cx2

MCQ | Q 53 | Page 144

The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is

• $y e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C$

• $y e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C$

• $x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C$

• $x e^{\int P_1 dy} = \int\left\{ Q_1 e^{\int P_1 dy} \right\}dy + C$

MCQ | Q 54 | Page 144

The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is

• x ey + x2 = C

• x ey + y2 = C

• y ex + x2 = C

• y ey + x2 = C

Revision Exercise [Pages 144 - 148]

### RD Sharma solutions for Class 12 Maths Chapter 22 Differential Equations Revision Exercise [Pages 144 - 148]

Revision Exercise | Q 1.1 | Page 144

Determine the order and degree (if defined) of the following differential equation:-

$\left( \frac{ds}{dt} \right)^4 + 3s\frac{d^2 s}{d t^2} = 0$

Revision Exercise | Q 1.2 | Page 144

Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0

Revision Exercise | Q 1.3 | Page 144

Determine the order and degree (if defined) of the following differential equation:-

(y"')2 + (y")3 + (y')4 + y5 = 0

Revision Exercise | Q 1.4 | Page 144

Determine the order and degree (if defined) of the following differential equation:-

y"' + 2y" + y' = 0

Revision Exercise | Q 1.5 | Page 144

Determine the order and degree (if defined) of the following differential equation:-

y" + (y')2 + 2y = 0

Revision Exercise | Q 1.6 | Page 144

Determine the order and degree (if defined) of the following differential equation:-

y" + 2y' + sin y = 0

Revision Exercise | Q 1.7 | Page 144

Determine the order and degree (if defined) of the following differential equation:-

y"' + y2 + ey' = 0

Revision Exercise | Q 2 | Page 144

Verify that the function y = e−3x is a solution of the differential equation $\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.$

Revision Exercise | Q 3.1 | Page 144

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0

Revision Exercise | Q 3.2 | Page 144

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x2 + 2x + C            y' − 2x − 2 = 0

Revision Exercise | Q 3.3 | Page 144

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = cos x + C            y' + sin x = 0

Revision Exercise | Q 3.4 | Page 144

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y=sqrt(1+x^2)                     y'=(xy)/(1+x^2)

Revision Exercise | Q 3.5 | Page 144

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = x sin x              xy'=y+xsqrt(x^2-y^2)

Revision Exercise | Q 3.6 | Page 144

In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y=sqrt(a^2-x^2)              x+y(dy/dx)=0

Revision Exercise | Q 4 | Page 145

Form the differential equation representing the family of curves y = mx, where m is an arbitrary constant.

Revision Exercise | Q 5 | Page 145

Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.

Revision Exercise | Q 6 | Page 145

Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.

Revision Exercise | Q 7 | Page 145

Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.

Revision Exercise | Q 8 | Page 145

Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

Revision Exercise | Q 9 | Page 145

Form the differential equation of the family of ellipses having foci on y-axis and centre at the origin.

Revision Exercise | Q 10 | Page 145

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.

Revision Exercise | Q 11 | Page 145

Verify that xy = a ex + b ex + x2 is a solution of the differential equation $x\frac{d^2 y}{d x^2} + 2\frac{dy}{dx} - xy + x^2 - 2 = 0.$

Revision Exercise | Q 12 | Page 145

Show that y = C x + 2C2 is a solution of the differential equation $2 \left( \frac{dy}{dx} \right)^2 + x\frac{dy}{dx} - y = 0.$

Revision Exercise | Q 13 | Page 145

Show that y2 − x2 − xy = a is a solution of the differential equation $\left( x - 2y \right)\frac{dy}{dx} + 2x + y = 0.$

Revision Exercise | Q 14 | Page 145

Verify that y = A cos x + sin x satisfies the differential equation $\cos x\frac{dy}{dx} + \left( \sin x \right)y=1.$

Revision Exercise | Q 15 | Page 145

Find the differential equation corresponding to y = ae2x + be3x + cex where abc are arbitrary constants.

Revision Exercise | Q 16 | Page 145

Show that the differential equation of all parabolas which have their axes parallel to y-axis is $\frac{d^3 y}{d x^3} = 0.$

Revision Exercise | Q 17 | Page 145

From x2 + y2 + 2ax + 2by + c = 0, derive a differential equation not containing a, b and c.

Revision Exercise | Q 18 | Page 145

$\frac{dy}{dx} = \sin^3 x \cos^4 x + x\sqrt{x + 1}$

Revision Exercise | Q 19 | Page 145

$\frac{dy}{dx} = \frac{1}{x^2 + 4x + 5}$

Revision Exercise | Q 20 | Page 145

$\frac{dy}{dx} = y^2 + 2y + 2$

Revision Exercise | Q 21 | Page 145

$\frac{dy}{dx} + 4x = e^x$

Revision Exercise | Q 22 | Page 145

$\frac{dy}{dx} = x^2 e^x$

Revision Exercise | Q 23 | Page 145

$\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}$

Revision Exercise | Q 24 | Page 145

$(\tan^2 x + 2\tan x + 5)\frac{dy}{dx} = 2(1+\tan x)\sec^2x$

Revision Exercise | Q 25 | Page 145

$\frac{dy}{dx} = \sin^3 x \cos^2 x + x e^x$

Revision Exercise | Q 26 | Page 145

tan y dx + tan x dy = 0

Revision Exercise | Q 27 | Page 145

(1 + xy dx + (1 + yx dy = 0

Revision Exercise | Q 28 | Page 145

x cos2 y dx = y cos2 x dy

Revision Exercise | Q 29 | Page 145

cos y log (sec x + tan x) dx = cos x log (sec y + tan y) dy

Revision Exercise | Q 30 | Page 145

cosec x (log y) dy + x2y dx = 0

Revision Exercise | Q 31 | Page 145

(1 − x2) dy + xy dx = xy2 dx

Revision Exercise | Q 32 | Page 146

$\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}$

Revision Exercise | Q 33 | Page 146

x (e2y − 1) dy + (x2 − 1) ey dx = 0

Revision Exercise | Q 34 | Page 146

$\frac{dy}{dx} + 1 = e^{x + y}$

Revision Exercise | Q 35 | Page 146

$\frac{dy}{dx} = \left( x + y \right)^2$

Revision Exercise | Q 36 | Page 146

cos (x + y) dy = dx

Revision Exercise | Q 37 | Page 146

$\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}$

Revision Exercise | Q 38 | Page 146

$\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}$

Revision Exercise | Q 39 | Page 146

(x + y − 1) dy = (x + y) dx

Revision Exercise | Q 40 | Page 146

$\frac{dy}{dx} - y \cot x = cosec\ x$

Revision Exercise | Q 41 | Page 146

$\frac{dy}{dx} - y \tan x = - 2 \sin x$

Revision Exercise | Q 42 | Page 146

$\frac{dy}{dx} - y \tan x = e^x \sec x$

Revision Exercise | Q 43 | Page 146

$\frac{dy}{dx} - y \tan x = e^x$

Revision Exercise | Q 44 | Page 146

(1 + y + x2 y) dx + (x + x3) dy = 0

Revision Exercise | Q 45 | Page 146

(x2 + 1) dy + (2y − 1) dx = 0

Revision Exercise | Q 46 | Page 146

y sec^2 x + (y + 7) tan x(dy)/(dx)=0

Revision Exercise | Q 47 | Page 146

(2ax+x^2)(dy)/(dx)=a^2+2ax

Revision Exercise | Q 48 | Page 146

(x3 − 2y3) dx + 3x2 y dy = 0

Revision Exercise | Q 49 | Page 146

x2 dy + (x2 − xy + y2) dx = 0

Revision Exercise | Q 50 | Page 146

$y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)$

Revision Exercise | Q 51 | Page 146

$\frac{dy}{dx} + 2y = \sin 3x$

Revision Exercise | Q 52 | Page 146

$\frac{dy}{dx} + y = 4x$

Revision Exercise | Q 53 | Page 146

$\frac{dy}{dx} + 5y = \cos 4x$

Revision Exercise | Q 54 | Page 146

$x\frac{dy}{dx} + x \cos^2 \left( \frac{y}{x} \right) = y$

Revision Exercise | Q 55 | Page 146

$\cos^2 x\frac{dy}{dx} + y = \tan x$

Revision Exercise | Q 56 | Page 146

x cos x(dy)/(dx)+y(x sin x + cos x)=1

Revision Exercise | Q 57 | Page 146

$\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0$

Revision Exercise | Q 58 | Page 146

$y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0$

Revision Exercise | Q 59 | Page 146

2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.

Revision Exercise | Q 60 | Page 146

(1 + y2) dx = (tan−1 y − x) dy

Revision Exercise | Q 61 | Page 146

(dy)/(dx)+ y tan x = x^n cos x, n ne− 1

Revision Exercise | Q 62 | Page 146

Find the general solution of the differential equation $\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2$

Revision Exercise | Q 63 | Page 146

Find the particular solution of the differential equation $\frac{dy}{dx} = - 4x y^2$ given that y = 1, when x = 0.

Revision Exercise | Q 64.1 | Page 146

For the following differential equation, find the general solution:- $\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}$

Revision Exercise | Q 64.2 | Page 146

For the following differential equation, find the general solution:- $\frac{dy}{dx} = \sqrt{4 - y^2}, - 2 < y < 2$

Revision Exercise | Q 64.3 | Page 146

For the following differential equation, find the general solution:- $\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)$

Revision Exercise | Q 64.4 | Page 146

For the following differential equation, find the general solution:- y log y dx − x dy = 0

Revision Exercise | Q 64.5 | Page 146

For the following differential equation, find the general solution:- $\frac{dy}{dx} = \sin^{- 1} x$

Revision Exercise | Q 64.6 | Page 146

For the following differential equation, find the general solution:- $\frac{dy}{dx} + y = 1$

Revision Exercise | Q 65.1 | Page 146

For the following differential equation, find a particular solution satisfying the given condition:- $x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2$

Revision Exercise | Q 65.2 | Page 146

For the following differential equation, find a particular solution satisfying the given condition:- $\cos\left( \frac{dy}{dx} \right) = a, y = 1\text{ when }x = 0$

Revision Exercise | Q 65.3 | Page 146

For the following differential equation, find a particular solution satisfying the given condition:- $\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0$

Revision Exercise | Q 66.01 | Page 147

Solve the following differential equation:- $\left( x - y \right)\frac{dy}{dx} = x + 2y$

Revision Exercise | Q 66.02 | Page 147

Solve the following differential equation:- $x \cos\left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x$

Revision Exercise | Q 66.03 | Page 147

Solve the following differential equation:- y dx + x log  (y)/(x)dy-2x dy=0

Revision Exercise | Q 66.04 | Page 147

Solve the following differential equation:-

$\frac{dy}{dx} - y = \cos x$

Revision Exercise | Q 66.05 | Page 147

Solve the following differential equation:-

$x\frac{dy}{dx} + 2y = x^2 , x \neq 0$

Revision Exercise | Q 66.06 | Page 147

Solve the following differential equation:-

$\frac{dy}{dx} + 2y = \sin x$

Revision Exercise | Q 66.07 | Page 147

Solve the following differential equation:-

$\frac{dy}{dx} + 3y = e^{- 2x}$

Revision Exercise | Q 66.08 | Page 147

Solve the following differential equation:-

$\frac{dy}{dx} + \frac{y}{x} = x^2$

Revision Exercise | Q 66.09 | Page 147

Solve the following differential equation:-

$\frac{dy}{dx} + \left( \sec x \right) y = \tan x$

Revision Exercise | Q 66.1 | Page 147

Solve the following differential equation:-

$x\frac{dy}{dx} + 2y = x^2 \log x$

Revision Exercise | Q 66.11 | Page 147

Solve the following differential equation:-

$x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x$

Revision Exercise | Q 66.12 | Page 147

Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx

Revision Exercise | Q 66.13 | Page 147

Solve the following differential equation:-

$\left( x + y \right)\frac{dy}{dx} = 1$

Revision Exercise | Q 66.14 | Page 147

Solve the following differential equation:-

y dx + (x − y2) dy = 0

Revision Exercise | Q 66.15 | Page 147

Solve the following differential equation:-

$\left( x + 3 y^2 \right)\frac{dy}{dx} = y$

Revision Exercise | Q 67.1 | Page 147

Find a particular solution of the following differential equation:- $\left( 1 + x^2 \right)\frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}; y = 0,\text{ when }x = 1$

Revision Exercise | Q 67.2 | Page 147

Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1

Revision Exercise | Q 67.3 | Page 147

Find a particular solution of the following differential equation:- x2 dy + (xy + y2) dx = 0; y = 1 when x = 1

Revision Exercise | Q 68 | Page 147

Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.

Revision Exercise | Q 69 | Page 147

Find the equation of a curve passing through the point (−2, 3), given that the slope of the tangent to the curve at any point (xy) is (2x)/y^2.

Revision Exercise | Q 70 | Page 147

Find the equation of a curve passing through the point (0, 0) and whose differential equation is $\frac{dy}{dx} = e^x \sin x.$

Revision Exercise | Q 71 | Page 147

At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (– 4, –3). Find the equation of the curve given that it passes through (–2, 1).

Revision Exercise | Q 72 | Page 147

Show that the family of curves for which $\frac{dy}{dx} = \frac{x^2 + y^2}{2xy}$, is given by $x^2 - y^2 = Cx$

Revision Exercise | Q 73 | Page 147

Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.

Revision Exercise | Q 74 | Page 147

Find the equation of the curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

Revision Exercise | Q 75 | Page 148

Find the equation of the curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.

Revision Exercise | Q 76 | Page 148

The slope of the tangent to the curve at any point is the reciprocal of twice the ordinate at that point. The curve passes through the point (4, 3). Determine its equation.

Revision Exercise | Q 77 | Page 148

The decay rate of radium at any time  t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.

Revision Exercise | Q 78 | Page 148

Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?

Revision Exercise | Q 79 | Page 148

A wet porous substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet hung in the wind loses half of its moisture during the first hour, when will it have lost 95% moisture, weather conditions remaining the same.

## Chapter 22: Differential Equations

Exercise 22.1Exercise 22.2Exercise 22.3Exercise 22.4Exercise 22.5Exercise 22.6Exercise 22.7Exercise 22.8Exercise 22.9Exercise 22.11Very Short AnswersMCQRevision Exercise

## RD Sharma solutions for Class 12 Maths chapter 22 - Differential Equations

RD Sharma solutions for Class 12 Maths chapter 22 (Differential Equations) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Class 12 Maths solutions in a manner that help students grasp basic concepts better and faster.

Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Class 12 Maths chapter 22 Differential Equations are Procedure to Form a Differential Equation that Will Represent a Given Family of Curves, Linear Differential Equations, Solutions of Linear Differential Equation, Homogeneous Differential Equations, Differential Equations with Variables Separable Method, Formation of a Differential Equation Whose General Solution is Given, General and Particular Solutions of a Differential Equation, Order and Degree of a Differential Equation, Basic Concepts of Differential Equation.

Using RD Sharma Class 12 solutions Differential Equations exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in RD Sharma Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 12 prefer RD Sharma Textbook Solutions to score more in exam.

Get the free view of chapter 22 Differential Equations Class 12 extra questions for Class 12 Maths and can use Shaalaa.com to keep it handy for your exam preparation