Account
It's free!

User



Login
Register


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

R.D. Sharma solutions 10 Mathematics chapter 3 Pair of Linear Equations in Two Variables

Chapters

R.D. Sharma 10 Mathematics

10 Mathematics

Chapter 3 - Pair of Linear Equations in Two Variables

Page 0

Akhila went to a fair in her village. She wanted to enjoy rides in the Giant Wheel and play Hoopla (a game in which you throw a rig on the items kept in the stall, and if the ring covers any object completely you get it.) The number of times she played Hoopla is half the number of rides she had on the Giant Wheel. Each ride costs Rs 3, and a game of Hoopla costs Rs 4. If she spent Rs 20 in the fair, represent this situation algebraically and graphically.

Akhila went to a fair in her village. She wanted to enjoy rides in the Giant Wheel and play Hoopla (a game in which you throw a rig on the items kept in the stall, and if the ring covers any object completely you get it.) The number of times she played Hoopla is half the number of rides she had on the Giant Wheel. Each ride costs Rs 3, and a game of Hoopla costs Rs 4. If she spent Rs 20 in the fair, represent this situation algebraically and graphically.

Aftab tells his daughter, “Seven years ago, I was seven times as old as you were then. Also, three years from now, I shall be three times as old as you will be.” (Isn’t this interesting?) Represent this situation algebraically and graphically

The path of a train A is given by the equation 3x + 4y − 12 = 0 and the path of another train B is given by the equation 6x + 8y − 48 = 0. Represent this situation graphically.

The path of a train A is given by the equation 3x + 4y − 12 = 0 and the path of another train B is given by the equation 6x + 8y − 48 = 0. Represent this situation graphically.

Gloria is walking along the path joining (−2, 3) and (2, −2), while Suresh is walking along the path joining (0, 5) and (4, 0). Represent this situation graphically.

Gloria is walking along the path joining (−2, 3) and (2, −2), while Suresh is walking along the path joining (0, 5) and (4, 0). Represent this situation graphically.

On comparing the ratios `a_1/a_2,b_1/b_2` and `c_1/c_2` without drawing them, find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincide.

(i) 5x – 4y + 8 = 0, 7x + 6y – 9 = 0

(ii) 9x + 3y + 12 = 0, 18x + 6y + 24 = 0

(iii) 6x – 3y + 10 = 0, 2x – y + 9 = 0

On comparing the ratios `a_1/a_2,b_1/b_2` and `c_1/c_2` without drawing them, find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincide.

(i) 5x – 4y + 8 = 0, 7x + 6y – 9 = 0

(ii) 9x + 3y + 12 = 0, 18x + 6y + 24 = 0

(iii) 6x – 3y + 10 = 0, 2x – y + 9 = 0

Given the linear equation 2x + 3y – 8 = 0, write another linear equation in two variables such that the geometrical representing of the pair so formed is :

(i) intersecting lines

(ii) parallel lines

(iii) coincident lines

Given the linear equation 2x + 3y – 8 = 0, write another linear equation in two variables such that the geometrical representing of the pair so formed is :

(i) intersecting lines

(ii) parallel lines

(iii) coincident lines

The cost of 2 kg of apples and 1 kg of grapes on a day was found to be Rs 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs 300. Represent the situation algebraically and geometrically.

Page 0

Solve the following systems of equations graphically:

x − 2y = 5

2x + 5y = 12

Solve the following systems of equations graphically:

x − 2y = 5

2x + 5y = 12

Solve the following systems of equations graphically:

x − 2y = 5

2x + 3y = 10

Solve the following systems of equations graphically:

x − 2y = 5

2x + 3y = 10

Solve the following systems of equations graphically:

3x + y + 1 = 0

2x − 3y + 8 = 0

Solve the following systems of equations graphically:

3x + y + 1 = 0

2x − 3y + 8 = 0

Solve the following systems of equations graphically:

2x + y − 3 = 0

2x − 3y − 7 = 0

Solve the following systems of equations graphically:

2x + y − 3 = 0

2x − 3y − 7 = 0

Solve the following systems of equations graphically:

x + y = 6

x − y = 2

Solve the following systems of equations graphically:

x + y = 6

x − y = 2

Solve the following systems of equations graphically:
x − 2y = 6

3x − 6y = 0

Solve the following systems of equations graphically:
x − 2y = 6

3x − 6y = 0

Solve the following systems of equations graphically:
x + y = 4

2x − 3y = 3

Solve the following systems of equations graphically:
x + y = 4

2x − 3y = 3

Solve the following systems of equations graphically:

2x + 3y = 4

x − y + 3 = 0

Solve the following systems of equations graphically:

2x + 3y = 4

x − y + 3 = 0

Solve the following systems of equations graphically:

2x − 3y + 13 = 0

3x − 2y + 12 = 0

Solve the following systems of equations graphically:

2x − 3y + 13 = 0

3x − 2y + 12 = 0

Solve the following systems of equations graphically:

2x + 3y + 5 = 0

3x − 2y − 12 = 0

Solve the following systems of equations graphically:

2x + 3y + 5 = 0

3x − 2y − 12 = 0

Show graphically that each one of the following systems of equations has infinitely many solutions:

2x + 3y = 6

4x + 6y = 12

Show graphically that each one of the following systems of equations has infinitely many solutions:

2x + 3y = 6

4x + 6y = 12

Show graphically that each one of the following systems of equations has infinitely many solutions:

x − 2y = 5

3x − 6y = 15

Show graphically that each one of the following systems of equations has infinitely many solutions:

x − 2y = 5

3x − 6y = 15

Show graphically that each one of the following systems of equations has infinitely many solutions:

3x + y = 8

6x + 2y = 16

Show graphically that each one of the following systems of equations has infinitely many solutions:

3x + y = 8

6x + 2y = 16

Show graphically that each one of the following systems of equations has infinitely many solutions:

x − 2y + 11 = 0

3x − 6y + 33 = 0

Show graphically that each one of the following systems of equations has infinitely many solutions:

x − 2y + 11 = 0

3x − 6y + 33 = 0

Show graphically that each one of the following systems of equations is inconsistent (i.e. has no solution) :

3x − 5y = 20

6x − 10y = −40

Show graphically that each one of the following systems of equations is inconsistent (i.e. has no solution) :

3x − 5y = 20

6x − 10y = −40

Show graphically that each one of the following systems of equations is inconsistent (i.e. has no solution) :

x − 2y = 6

3x − 6y = 0

Show graphically that each one of the following systems of equations is inconsistent (i.e. has no solution) :

x − 2y = 6

3x − 6y = 0

Show graphically that each one of the following systems of equations is inconsistent (i.e. has no solution) :

2y − x = 9

6y − 3x = 21

Show graphically that each one of the following systems of equations is inconsistent (i.e. has no solution) :

2y − x = 9

6y − 3x = 21

Show graphically that each one of the following systems of equations is inconsistent (i.e. has no solution) :

3x − 4y − 1 = 0

`2x - 8/3y + 5 = 0`

Show graphically that each one of the following systems of equations is inconsistent (i.e. has no solution) :

3x − 4y − 1 = 0

`2x - 8/3y + 5 = 0`

Determine graphically the vertices of the triangle, the equations of whose sides are given below :

2y − = 8, 5y − x = 14 and y − 2x = 1

Determine graphically the vertices of the triangle, the equations of whose sides are given below :

2y − = 8, 5y − x = 14 and y − 2x = 1

Determine graphically the vertices of the triangle, the equations of whose sides are given below :

y = xy = 0 and 3x + 3y = 10

Determine graphically the vertices of the triangle, the equations of whose sides are given below :

y = xy = 0 and 3x + 3y = 10

Determine, graphically whether the system of equations x − 2y = 2, 4x − 2y = 5 is consistent or in-consistent.

Determine, graphically whether the system of equations x − 2y = 2, 4x − 2y = 5 is consistent or in-consistent.

Determine, by drawing graphs, whether the following system of linear equations has a unique solution or not :

2x − 3y = 6, x + y = 1

Determine, by drawing graphs, whether the following system of linear equations has a unique solution or not :

2x − 3y = 6, x + y = 1

Determine, by drawing graphs, whether the following system of linear equations has a unique solution or not :

2y = 4x − 6, 2x = y + 3

Determine, by drawing graphs, whether the following system of linear equations has a unique solution or not :

2y = 4x − 6, 2x = y + 3

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

2x − 5y + 4 = 0,

2x + y − 8 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

2x − 5y + 4 = 0,

2x + y − 8 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

3x + 2y = 12,

5x − 2y = 4

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

3x + 2y = 12,

5x − 2y = 4

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

 2x + y − 11 = 0, 

x − y − 1 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

 2x + y − 11 = 0, 

x − y − 1 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

x + 2y − 7 = 0,

2x − y − 4 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

x + 2y − 7 = 0,

2x − y − 4 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

3x + y − 5 = 0

2x − y − 5 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y.

3x + y − 5 = 0

2x − y − 5 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y

2x − y − 5 = 0,

x − y − 3 = 0

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet axis of y

2x − y − 5 = 0,

x − y − 3 = 0

Determine graphically the coordinates of the vertices of a triangle, the equations of whose sides are :

y = x, y = 2x and y + x = 6

Determine graphically the coordinates of the vertices of a triangle, the equations of whose sides are :

y = x, y = 2x and y + x = 6

Determine graphically the coordinates of the vertices of a triangle, the equations of whose sides are :

y = x, 3y = xx + y = 8

Determine graphically the coordinates of the vertices of a triangle, the equations of whose sides are :

y = x, 3y = xx + y = 8

Solve the following system of linear equation graphically and shade the region between the two lines and x-axis:

2x + 3y = 12

x − y = 1

Solve the following system of linear equation graphically and shade the region between the two lines and x-axis:

2x + 3y = 12

x − y = 1

Solve the following system of linear equation graphically and shade the region between the two lines and x-axis:

3x + 2y − 4 = 0, 2x − 3y − 7 = 0

Solve the following system of linear equation graphically and shade the region between the two lines and x-axis:

3x + 2y − 4 = 0, 2x − 3y − 7 = 0

Solve the following system of linear equations graphically and shade the region between the two lines and x-axis:

3x + 2y − 11 = 0

2x − 3y + 10 = 0

Solve the following system of linear equations graphically and shade the region between the two lines and x-axis:

3x + 2y − 11 = 0

2x − 3y + 10 = 0

Draw the graphs of the following equations on the same graph paper:

2x + 3y = 12,

x − y = 1

Draw the graphs of the following equations on the same graph paper:

2x + 3y = 12,

x − y = 1

Draw the graphs of x − y + 1 = 0 and 3x + 2y − 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and x-axis and shade the triangular area. Calculate the area bounded by these lines and x-axis.

Draw the graphs of x − y + 1 = 0 and 3x + 2y − 12 = 0. Determine the coordinates of the vertices of the triangle formed by these lines and x-axis and shade the triangular area. Calculate the area bounded by these lines and x-axis.

Solve the following system of linear equations graphically; 3x + y – 11 = 0; x – y – 1 = 0 Shade the region bounded by these lines and also y-axis. Then, determine the areas of the region bounded by these lines and y-axis.

Solve the following system of linear equations graphically; 3x + y – 11 = 0; x – y – 1 = 0 Shade the region bounded by these lines and also y-axis. Then, determine the areas of the region bounded by these lines and y-axis.

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet the axis of x in each system.

2x + = 6
x − 2y = −2

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet the axis of x in each system.

2x + = 6
x − 2y = −2

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet the axis of x in each system.

2x − = 2
4x − y = 8

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet the axis of x in each system.

2x − = 2
4x − y = 8

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet the axis of x in each system.

 x + 2y = 5
2x − 3y = −4

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet the axis of x in each system.

 x + 2y = 5
2x − 3y = −4

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet the axis of x in each system.

2x + 3y = 8
x − 2y = −3

Solve graphically each of the following systems of linear equations. Also, find the coordinates of the points where the lines meet the axis of x in each system.

2x + 3y = 8
x − 2y = −3

Draw the graphs of the following equations:

2x − 3y + 6 = 0
2x + 3y − 18 = 0
y − 2 = 0

Find the vertices of the triangle so obtained. Also, find the area of the triangle.

Draw the graphs of the following equations:

2x − 3y + 6 = 0
2x + 3y − 18 = 0
y − 2 = 0

Find the vertices of the triangle so obtained. Also, find the area of the triangle.

Solve the following system of equations graphically.

2x − 3y + 6 = 0
2x + 3y − 18 = 0

Also, find the area of the region bounded by these two lines and y-axis.

Solve the following system of equations graphically.

2x − 3y + 6 = 0
2x + 3y − 18 = 0

Also, find the area of the region bounded by these two lines and y-axis.

Solve the following system of linear equations graphically

4x − 5y − 20 = 0
3x + 5y − 15 = 0

Determine the vertices of the triangle formed by the lines representing the above equation and the y-axis.

Solve the following system of linear equations graphically

4x − 5y − 20 = 0
3x + 5y − 15 = 0

Determine the vertices of the triangle formed by the lines representing the above equation and the y-axis.

Solve the following system of linear equations graphically

4x − 5y − 20 = 0
3x + 5y − 15 = 0

Determine the vertices of the triangle formed by the lines representing the above equation and the y-axis.

Solve the following system of linear equations graphically

4x − 5y − 20 = 0
3x + 5y − 15 = 0

Determine the vertices of the triangle formed by the lines representing the above equation and the y-axis.

Draw the graphs of the equations 5x − y = 5 and 3x − y = 3. Determine the coordinates of the vertices of the triangle formed by these lines and the y axis.

Draw the graphs of the equations 5x − y = 5 and 3x − y = 3. Determine the coordinates of the vertices of the triangle formed by these lines and the y axis.

10 students of class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.

10 students of class X took part in a Mathematics quiz. If the number of girls is 4 more than the number of boys, find the number of boys and girls who took part in the quiz.

Form the pair of linear equations in the following problems, and find their solutions graphically

5 pencils and 7 pens together cost Rs 50, whereas 7 pencils and 5 pens together cost Rs 46. Find the cost of one pencil and that of one pen

Form the pair of linear equations in the following problems, and find their solutions graphically

5 pencils and 7 pens together cost Rs 50, whereas 7 pencils and 5 pens together cost Rs 46. Find the cost of one pencil and that of one pen

Form the pair of linear equations in the following problems, and find their solution graphically:

Champa went to a 'sale' to purchase some pants and skirts. When her friends asked her how many of each she had bought, she answered, "The number of skirts is two less than twice the number of pants purchased. Also, the number of skirts is four less than four times the number of pants purchased." Help her friends to find how many pants and skirts Champa bought.

Form the pair of linear equations in the following problems, and find their solution graphically:

Champa went to a 'sale' to purchase some pants and skirts. When her friends asked her how many of each she had bought, she answered, "The number of skirts is two less than twice the number of pants purchased. Also, the number of skirts is four less than four times the number of pants purchased." Help her friends to find how many pants and skirts Champa bought.

Solve the following system of equations graphically:
Shade the region between the lines and the y-axis

3x − 4y = 7
5x + 2y = 3

Solve the following system of equations graphically:
Shade the region between the lines and the y-axis

3x − 4y = 7
5x + 2y = 3

Solve the following system of equations graphically:
Shade the region between the lines and the y-axis

4x − y = 4
3x + 2y = 14

Solve the following system of equations graphically:
Shade the region between the lines and the y-axis

4x − y = 4
3x + 2y = 14

Represent the following pair of equations graphically and write the coordinates of points where the lines intersect y-axis.

x + 3y = 6
2x − 3y = 12

Represent the following pair of equations graphically and write the coordinates of points where the lines intersect y-axis.

x + 3y = 6
2x − 3y = 12

Page 0

Solve the following systems of equations:

11x + 15y + 23 = 0

7x – 2y – 20 = 0

Solve the following systems of equations:

11x + 15y + 23 = 0

7x – 2y – 20 = 0

Solve the following systems of equations:

3x − 7y + 10 = 0
y − 2x − 3 = 0

Solve the following systems of equations:

3x − 7y + 10 = 0
y − 2x − 3 = 0

Solve the following systems of equations:

0.4x + 0.3y = 1.7
0.7x − 0.2y = 0.8

Solve the following systems of equations:

0.4x + 0.3y = 1.7
0.7x − 0.2y = 0.8

Solve the following systems of equations:

`x/2 + y = 0.8`

`7/(x + y/2) = 10`

Solve the following systems of equations:

`x/2 + y = 0.8`

`7/(x + y/2) = 10`

Solve the following systems of equations:

7(y + 3) − 2(x + 2) = 14
4(y − 2) + 3(x − 3) = 2

Solve the following systems of equations:

7(y + 3) − 2(x + 2) = 14
4(y − 2) + 3(x − 3) = 2

Solve the following systems of equations:

`x/7 + y/3 = 5`

`x/2 - y/9 = 6`

Solve the following systems of equations:

`x/7 + y/3 = 5`

`x/2 - y/9 = 6`

Solve the following systems of equations:

`x/3 + y/4 =11`

`(5x)/6 - y/3 = -7`

Solve the following systems of equations:

`x/3 + y/4 =11`

`(5x)/6 - y/3 = -7`

Solve the following systems of equations:

4u + 3y = 8

`6u - 4y = -5`

Solve the following systems of equations:

4u + 3y = 8

`6u - 4y = -5`

Solve the following systems of equations:

`x + y/2 = 4`

`x/3 + 2y = 5`

Solve the following systems of equations:

`x + y/2 = 4`

`x/3 + 2y = 5`

Solve the following systems of equations:

`x + 2y = 3/2`

`2x + y = 3/2`

Solve the following systems of equations:

`x + 2y = 3/2`

`2x + y = 3/2`

Solve the following systems of equations:

`sqrt2x + sqrt3y = 0`

`sqrt3x - sqrt8y = 0`

Solve the following systems of equations:

`sqrt2x + sqrt3y = 0`

`sqrt3x - sqrt8y = 0`

Solve the following systems of equations:

`3x - (y + 7)/11 + 2 = 10`

`2y + (x + 10)/7 = 10`

Solve the following systems of equations:

`3x - (y + 7)/11 + 2 = 10`

`2y + (x + 10)/7 = 10`

Solve the following systems of equations:

`2x - 3/y = 9`

`3x + 7/y = 2,  y != 0`

 

Solve the following systems of equations:

`2x - 3/y = 9`

`3x + 7/y = 2,  y != 0`

 

Solve the following systems of equations:

0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5

Solve the following systems of equations:

0.5x + 0.7y = 0.74
0.3x + 0.5y = 0.5

Solve the following systems of equations:

`1/(7x) + 1/(6y) = 3`

`1/(2x) - 1/(3y) = 5`

Solve the following systems of equations:

`1/(7x) + 1/(6y) = 3`

`1/(2x) - 1/(3y) = 5`

Solve the following systems of equations:

`1/(2x) + 1/(3y) = 2`

`1/(3x) + 1/(2y) = 13/6`

Solve the following systems of equations:

`1/(2x) + 1/(3y) = 2`

`1/(3x) + 1/(2y) = 13/6`

Solve the following systems of equations:

`(x + y)/(xy) = 2`

`(x - y)/(xy) = 6`

Solve the following systems of equations:

`(x + y)/(xy) = 2`

`(x - y)/(xy) = 6`

Solve the following systems of equations:

`15/u + 2/v = 17`

Solve the following systems of equations:

`15/u + 2/v = 17`

Solve the following systems of equations:

`3/x - 1/y = -9`

`2/x + 3/y  = 5`

Solve the following systems of equations:

`3/x - 1/y = -9`

`2/x + 3/y  = 5`

Solve the following systems of equations:
`2/x + 5/y = 1`

`60/x + 40/y = 19, x = ! 0, y != 0`

Solve the following systems of equations:
`2/x + 5/y = 1`

`60/x + 40/y = 19, x = ! 0, y != 0`

Solve the following systems of equations:

`1/(5x) + 1/(6y) = 12`

`1/(3x) - 3/(7y) = 8, x ~= 0, y != 0`

Solve the following systems of equations:

`1/(5x) + 1/(6y) = 12`

`1/(3x) - 3/(7y) = 8, x ~= 0, y != 0`

Solve the following systems of equations:

`2/x + 3/y = 9/(xy)`

`4/x + 9/y = 21/(xy), where x != 0, y != 0`

Solve the following systems of equations:

`2/x + 3/y = 9/(xy)`

`4/x + 9/y = 21/(xy), where x != 0, y != 0`

Solve the following systems of equations:

`6/(x + y) = 7/(x - y) + 3`

`1/(2(x + y)) = 1/(3(x - y))`, where x + y ≠ 0 and x – y ≠ 0

Solve the following systems of equations:

`6/(x + y) = 7/(x - y) + 3`

`1/(2(x + y)) = 1/(3(x - y))`, where x + y ≠ 0 and x – y ≠ 0

Solve the following systems of equations:

`"xy"/(x + y) = 6/5`

`"xy"/(y- x) = 6`

Solve the following systems of equations:

`"xy"/(x + y) = 6/5`

`"xy"/(y- x) = 6`

Solve the following systems of equations:

`22/(x + y) + 15/(x - y) = 5`

`55/(x + y) + 45/(x - y) = 14`

Solve the following systems of equations:

`22/(x + y) + 15/(x - y) = 5`

`55/(x + y) + 45/(x - y) = 14`

Solve the following systems of equations:

`5/(x + y) - 2/(x - y) = -1`

`15/(x + y) + 7/(x - y) = 10`

Solve the following systems of equations:

`5/(x + y) - 2/(x - y) = -1`

`15/(x + y) + 7/(x - y) = 10`

Solve the following systems of equations:

`3/(x + y) + 2/(x - y) = 2`

`9/(x + y) - 4/(x - y) = 1`

Solve the following systems of equations:

`3/(x + y) + 2/(x - y) = 2`

`9/(x + y) - 4/(x - y) = 1`

Solve the following systems of equations:

`1/(2(x + 2y)) + 5/(3(3x - 2y)) = (-3)/2`

`5/(4(x + 2y)) - 3'/(5(3x - 2y)) = 61/60`

Solve the following systems of equations:

`1/(2(x + 2y)) + 5/(3(3x - 2y)) = (-3)/2`

`5/(4(x + 2y)) - 3'/(5(3x - 2y)) = 61/60`

Solve the following systems of equations:

`5/(x + 1) - 2/(y -1) = 1/2`

`10/(x + 1) + 2/(y - 1) = 5/2` where `x != -1 and y != 1`

Solve the following systems of equations:

`5/(x + 1) - 2/(y -1) = 1/2`

`10/(x + 1) + 2/(y - 1) = 5/2` where `x != -1 and y != 1`

Solve the following systems of equations:

x + y = 5xy
3x + 2y = 13xy

Solve the following systems of equations:

x + y = 5xy
3x + 2y = 13xy

Solve the following systems of equations:

x+y=2xy

`(x - y)/(xy) = 6`   x != 0, y != 0

Solve the following systems of equations:

x+y=2xy

`(x - y)/(xy) = 6`   x != 0, y != 0

Solve the following systems of equations:

2(3u − ν) = 5uν
2(u + 3ν) = 5uν

Solve the following systems of equations:

2(3u − ν) = 5uν
2(u + 3ν) = 5uν

Solve the following systems of equations:

`2/(3x + 2y) + 3/(3x - 2y) = 17/5`

`5/(3x + 2y) + 1/(3x - 2y) = 2`

Solve the following systems of equations:

`2/(3x + 2y) + 3/(3x - 2y) = 17/5`

`5/(3x + 2y) + 1/(3x - 2y) = 2`

Solve the following systems of equations:

`4/x + 3y = 14`

`3/x - 4y = 23`

Solve the following systems of equations:

`4/x + 3y = 14`

`3/x - 4y = 23`

Solve the following systems of equations:

99x + 101y = 499
101x + 99y = 501

Solve the following systems of equations:

99x + 101y = 499
101x + 99y = 501

Solve the following systems of equations:

23x − 29y = 98
29x − 23y = 110

Solve the following systems of equations:

23x − 29y = 98
29x − 23y = 110

Solve the following systems of equations:

x − y + z = 4
x − 2y − 2z = 9
2x + y + 3z = 1

Solve the following systems of equations:

x − y + z = 4
x − 2y − 2z = 9
2x + y + 3z = 1

Solve the following systems of equations:

x − y + z = 4
x + y + z = 2
2x + y − 3z = 0

Solve the following systems of equations:

x − y + z = 4
x + y + z = 2
2x + y − 3z = 0

Solve the following systems of equations:

`44/(x + y) + 30/(x - y) = 10`

`55/(x + y) + 40/(x - y) = 13`

Solve the following systems of equations:

`44/(x + y) + 30/(x - y) = 10`

`55/(x + y) + 40/(x - y) = 13`

Solve the following systems of equations:

`4/x + 15y = 21`

`3/x + 4y = 5`

Solve the following systems of equations:

`4/x + 15y = 21`

`3/x + 4y = 5`

Solve the following systems of equations:

`2(1/x) + 3(1/y) = 13`

`5(1/x) - 4(1/y) = -2`

 

Solve the following systems of equations:

`2(1/x) + 3(1/y) = 13`

`5(1/x) - 4(1/y) = -2`

 

Solve the following systems of equations:

`5/(x - 1) + 1/(y - 2)  = 2`

Solve the following systems of equations:

`5/(x - 1) + 1/(y - 2)  = 2`

Solve the following systems of equations:

`10/(x + y) + 2/(x - y) = 4`

`15/(x + y) - 5/(x - y) = -2`

Solve the following systems of equations:

`10/(x + y) + 2/(x - y) = 4`

`15/(x + y) - 5/(x - y) = -2`

Solve the following systems of equations:

`1/(3x + y) + 1/(3x - y) = 3/4`

`1/(2(3x + y)) - 1/(2(3x - y)) = -1/8`

Solve the following systems of equations:

`1/(3x + y) + 1/(3x - y) = 3/4`

`1/(2(3x + y)) - 1/(2(3x - y)) = -1/8`

Solve the following systems of equations:

`2/sqrtx + 3/sqrty = 2`

`4/sqrtx - 9/sqrty = -1`

Solve the following systems of equations:

`2/sqrtx + 3/sqrty = 2`

`4/sqrtx - 9/sqrty = -1`

Solve the following systems of equations:

`(7x - 2y)/"xy" = 5`

`(8x + 7y)/"xy" = 15`

Solve the following systems of equations:

`(7x - 2y)/"xy" = 5`

`(8x + 7y)/"xy" = 15`

Solve the following systems of equations:

152x − 378y = −74
−378x + 152y = −604

Solve the following systems of equations:

152x − 378y = −74
−378x + 152y = −604

Page 0

Solve each of the following systems of equations by the method of cross-multiplication :

x + 2y + 1 = 0
2x − 3y − 12 = 0

Solve each of the following systems of equations by the method of cross-multiplication :

x + 2y + 1 = 0
2x − 3y − 12 = 0

Solve each of the following systems of equations by the method of cross-multiplication 

3x + 2y + 25 = 0
2x + y + 10 = 0

Solve each of the following systems of equations by the method of cross-multiplication 

3x + 2y + 25 = 0
2x + y + 10 = 0

Solve each of the following systems of equations by the method of cross-multiplication :

2x + y = 35
3x + 4y = 65

Solve each of the following systems of equations by the method of cross-multiplication :

2x + y = 35
3x + 4y = 65

Solve each of the following systems of equations by the method of cross-multiplication 

2x − y = 6
x − y = 2

Solve each of the following systems of equations by the method of cross-multiplication 

2x − y = 6
x − y = 2

Solve each of the following systems of equations by the method of cross-multiplication 

`(x + y)/(xy) = 2`

`(x - y)/(xy) = 6`

Solve each of the following systems of equations by the method of cross-multiplication 

`(x + y)/(xy) = 2`

`(x - y)/(xy) = 6`

Solve each of the following systems of equations by the method of cross-multiplication

ax + by = a − b
bx − ay = a + b

Solve each of the following systems of equations by the method of cross-multiplication

ax + by = a − b
bx − ay = a + b

Solve each of the following systems of equations by the method of cross-multiplication 

x + ay = b
ax − by = c

Solve each of the following systems of equations by the method of cross-multiplication 

x + ay = b
ax − by = c

Solve each of the following systems of equations by the method of cross-multiplication 

ax + by = a2
bx + ay = b2

Solve each of the following systems of equations by the method of cross-multiplication 

ax + by = a2
bx + ay = b2

Solve each of the following systems of equations by the method of cross-multiplication 

`x/a + y/b = 2`

`ax - by = a^2 - b^2`

Solve each of the following systems of equations by the method of cross-multiplication 

`x/a + y/b = 2`

`ax - by = a^2 - b^2`

Solve each of the following systems of equations by the method of cross-multiplication 

`x/a + y/b = a + b`

Solve each of the following systems of equations by the method of cross-multiplication 

`x/a + y/b = a + b`

Solve each of the following systems of equations by the method of cross-multiplication 

`x/a = y/b`

`ax + by = a^2 + b^2`

Solve each of the following systems of equations by the method of cross-multiplication 

`x/a = y/b`

`ax + by = a^2 + b^2`

Solve each of the following systems of equations by the method of cross-multiplication :

`5/(x + y) - 2/(x - y) = -1`

`15/(x + y) + 7/(x - y) = 10`

where `x != 0 and y != 0`

Solve each of the following systems of equations by the method of cross-multiplication :

`5/(x + y) - 2/(x - y) = -1`

`15/(x + y) + 7/(x - y) = 10`

where `x != 0 and y != 0`

Solve each of the following systems of equations by the method of cross-multiplication :

`2/x + 3/y = 13`

`5/4 - 4/y = -2`

where `x != 0 and y != 0`

Solve each of the following systems of equations by the method of cross-multiplication :

`2/x + 3/y = 13`

`5/4 - 4/y = -2`

where `x != 0 and y != 0`

Solve each of the following systems of equations by the method of cross-multiplication :

`ax + by = (a + b)/2`

3x + 5y = 4

Solve each of the following systems of equations by the method of cross-multiplication :

`ax + by = (a + b)/2`

3x + 5y = 4

Solve each of the following systems of equations by the method of cross-multiplication :

2ax + 3by = a + 2b
3ax + 2by = 2a + b

Solve each of the following systems of equations by the method of cross-multiplication :

2ax + 3by = a + 2b
3ax + 2by = 2a + b

Solve each of the following systems of equations by the method of cross-multiplication 

5ax + 6by = 28
3ax + 4by = 18

Solve each of the following systems of equations by the method of cross-multiplication 

5ax + 6by = 28
3ax + 4by = 18

Solve each of the following systems of equations by the method of cross-multiplication :

(a + 2b)x + (2a − b)y = 2
(a − 2b)x + (2a + b)y = 3

Solve each of the following systems of equations by the method of cross-multiplication :

(a + 2b)x + (2a − b)y = 2
(a − 2b)x + (2a + b)y = 3

Solve each of the following systems of equations by the method of cross-multiplication :

`x(a - b + (ab)/(a -  b)) = y(a + b - (ab)/(a + b))`

`x + y = 2a^2`

Solve each of the following systems of equations by the method of cross-multiplication :

`x(a - b + (ab)/(a -  b)) = y(a + b - (ab)/(a + b))`

`x + y = 2a^2`

Solve each of the following systems of equations by the method of cross-multiplication 

bx + cy  = a + b

`ax (1/(a - b) - 1/(a + b)) + cy(1/(b -a) - 1/(b + a)) = (2a)/(a + b)`

Solve each of the following systems of equations by the method of cross-multiplication 

bx + cy  = a + b

`ax (1/(a - b) - 1/(a + b)) + cy(1/(b -a) - 1/(b + a)) = (2a)/(a + b)`

Solve each of the following systems of equations by the method of cross-multiplication 

`(a - b)x + (a + b)y = 2a^2 - 2b^2`

(a + b)(a + y) =  4ab

Solve each of the following systems of equations by the method of cross-multiplication 

`(a - b)x + (a + b)y = 2a^2 - 2b^2`

(a + b)(a + y) =  4ab

Solve each of the following systems of equations by the method of cross-multiplication 

`a^2x + b^2y = c^2`

`b^2x + a^2y = d^2`

Solve each of the following systems of equations by the method of cross-multiplication 

`a^2x + b^2y = c^2`

`b^2x + a^2y = d^2`

Solve each of the following systems of equations by the method of cross-multiplication :

`57/(x + y) + 6/(x - y) = 5`

`38/(x + y) + 21/(x - y) = 9`

Solve each of the following systems of equations by the method of cross-multiplication :

`57/(x + y) + 6/(x - y) = 5`

`38/(x + y) + 21/(x - y) = 9`

Solve each of the following systems of equations by the method of cross-multiplication :

2(ax – by) + a + 4b = 0

2(bx + ay) + b – 4a = 0

Solve each of the following systems of equations by the method of cross-multiplication :

2(ax – by) + a + 4b = 0

2(bx + ay) + b – 4a = 0

Solve each of the following systems of equations by the method of cross-multiplication :

6(ax + by) = 3a + 2b

6(bx - ay) = 3b - 2a

Solve each of the following systems of equations by the method of cross-multiplication :

6(ax + by) = 3a + 2b

6(bx - ay) = 3b - 2a

Solve each of the following systems of equations by the method of cross-multiplication :

`a^2/x - b^2/y = 0`

`(a^2b)/x + (b^2a)/y = a + b, x , y != 0`

Solve each of the following systems of equations by the method of cross-multiplication :

`a^2/x - b^2/y = 0`

`(a^2b)/x + (b^2a)/y = a + b, x , y != 0`

Solve each of the following systems of equations by the method of cross-multiplication :

mx – my = m2 + n2

x + y = 2m

Solve each of the following systems of equations by the method of cross-multiplication :

mx – my = m2 + n2

x + y = 2m

Solve each of the following systems of equations by the method of cross-multiplication :

`(ax)/b - (by)/a = a + b`

ax - by = 2ab

Solve each of the following systems of equations by the method of cross-multiplication :

`(ax)/b - (by)/a = a + b`

ax - by = 2ab

Solve each of the following systems of equations by the method of cross-multiplication :

`b/a x + a/b y - (a^2 + b^2) = 0`

x + y - 2ab = 0

Solve each of the following systems of equations by the method of cross-multiplication :

`b/a x + a/b y - (a^2 + b^2) = 0`

x + y - 2ab = 0

Page 0

In the following systems of equations determine whether the system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

x − 3y = 3
3x − 9y = 2

In the following systems of equations determine whether the system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

2x + y - 5 = 0

4x + 2y - 10 = 0

In the following systems of equations determine whether the system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

3x - 5y = 20

6x - 10y = 40

In the following systems of equations determine whether the system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

x - 2y - 8 = 0

5x - 10y - 10 = 0

In the following systems of equations determine whether the system has a unique solution, no solution or infinitely many solutions. In case there is a unique solution, find it:

kx + 2y - 5 = 0

3x + y - 1 = 0

Find the value of k for which the following system of equations has a unique solution:

4x + ky + 8 = 0

2x + 2y + 2 = 0

Find the value of k for which the following system of equations has a unique solution:

4x - 5y = k

2x - 3y = 12

Find the value of k for which the following system of equations has a unique solution:

x + 2y = 3

5x + ky + 7 = 0

Find the value of k for which each of the following systems of equations has infinitely many solutions :

2x + 3y − 5 = 0
6x + ky − 15 = 0

Find the value of k for which each of the following systems of equations has infinitely many solutions :

4x + 5y = 3

kx + 15y = 9

Find the value of k for which each of the following system of equations has infinitely many solutions 

kx - 2y + 6 = 0

4x + 3y + 9 = 0

Find the value of k for which each of the following system of equations has infinitely many solutions :

8x + 5y = 9

kx + 10y = 18

Find the value of k for which each of the following system of equations have infinitely many solutions :

2x - 3y = 7

(k + 2)x - (2k + 1)y - 3(2k -1)

Find the value of k for which each of the following system of equations has infinitely many solutions :

2x + 3y = 2

(k + 2)x + (2k + 1)y - 2(k - 1)

Find the value of k for which each of the following system of equations has infinitely many solutions :

k32k+1

2(1)971

Find the value of k for which each of the following system of equations has infinitely many solutions :

x + (k + 1)y =4

(k + 1)x + 9y - (5k + 2)

Find the value of k for which each of the following system of equations has infinitely many solutions :

2x + (k - 2)y = k

6x + (2k - 1)y - (2k + 5)

Find the value of k for which each of the following system of equations have infinitely many solutions :

2x + 3y = 7

(k + 1)x + (2k - 1)y - (4k + 1)

Find the value of k for which each of the following system of equations has infinitely many solutions :

23k

(− 1)(2)3k

Find the value of k for which each of the following system of equations have no solution

k− 52

627

Find the value of k for which each of the following system of equations have no solution

x + 2y = 0

2x + ky = 5

Find the value of k for which each of the following system of equations have no solution :

3x - 4y + 7 = 0

kx + 3y - 5 = 0

Find the value of k for which each of the following system of equations have no solution :

2x - ky + 3 = 0

3x + 2y - 1 = 0

Find the value of k for which each of the following system of equations have no solution :

2x + ky = 11
5x − 7y = 5

Find the value of k for which the following system of equations has a unique solution:

kx + 3y = 3

12x + ky = 6

For what value of ෺, the following system of equations will be inconsistent?

4x + 6y - 11 = 0

2x + ky - 7 = 0

For what value of α, the system of equations

αx + 3y = α - 3

12x + αy =  α

will have no solution?

Find the value of k for which the system
kx + 2y = 5
3x + y = 1
has (i) a unique solution, and (ii) no solution.

Prove that there is a value of c (≠ 0) for which the system

6x + 3y = c - 3

12x + cy = c

has infinitely many solutions. Find this value.

Find the values of k for which the system
2x + ky = 1
3x – 5y = 7
will have (i) a unique solution, and (ii) no solution. Is there a value of k for which the
system has infinitely many solutions?

For what value of k, the following system of equations will represent the coincident lines?

x + 2y + 7 = 0

2x + ky + 14 = 0

Obtain the condition for the following system of linear equations to have a unique solution

ax + by = c

lx + my = n

Determine the values of a and b so that the following system of linear equations have infinitely many solutions:

(2a - 1)x + 3y - 5 = 0

3x + (b - 1)y - 2 = 0

Find the values of a and b for which the following system of linear equations has infinite the number of solutions:

2x - 3y = 7

(a + b)x - (a + b - 3)y = 4a + b

Find the values of p and q for which the following system of linear equations has infinite a number of solutions:

2x - 3y = 9

(p + q)x + (2p - q)y = 3(p + q + 1)

Find the values of a and b for which the following system of equations has infinitely many solutions:

2x + 3y = 7

(a - b)x + (a + b)y = 3a + b - 2

Find the values of a and b for which the following system of equations has infinitely many solutions:

(2a - 1)x - 3y = 5

3x + (b - 2)y = 3

Find the values of a and b for which the following system of equations has infinitely many solutions:

2x - (2a + 5)y = 5

(2b + 1)x - 9y = 15

Find the values of a and b for which the following system of equations has infinitely many solutions:

(a - 1)x + 3y = 2

6x + (1 + 2b)y = 6

Find the values of a and b for which the following system of equations has infinitely many solutions:

3x + 4y = 12

(a + b)x + 2(a - b)y = 5a - 1

Find the values of a and b for which the following system of equations has infinitely many solutions:

2x + 3y = 7

(a - 1)x + (a + 1)y = (3a - 1)

Find the values of a and b for which the following system of equations has infinitely many solutions:

2x + 3y = 7

(a - 1)x + (a + 2)y = 3a

Page 0

5 pens and 6 pencils together cost Rs 9 and 3 pens and 2 pencils cost Rs 5. Find the cost of
1 pen and 1 pencil.

5 pens and 6 pencils together cost Rs 9 and 3 pens and 2 pencils cost Rs 5. Find the cost of
1 pen and 1 pencil.

7 audio cassettes and 3 video cassettes cost Rs 1110, while 5 audio cassettes and 4 video
cassettes cost Rs 1350. Find the cost of an audio cassette and a video cassette.

7 audio cassettes and 3 video cassettes cost Rs 1110, while 5 audio cassettes and 4 video
cassettes cost Rs 1350. Find the cost of an audio cassette and a video cassette.

Reena has pens and pencils which together are 40 in number. If she has 5 more pencils and
5 less pens, then the number of pencils would become 4 times the number of pens. Find the
original number of pens and pencils.

Reena has pens and pencils which together are 40 in number. If she has 5 more pencils and
5 less pens, then the number of pencils would become 4 times the number of pens. Find the
original number of pens and pencils.

4 tables and 3 chairs, together, cost Rs 2,250 and 3 tables and 4 chairs cost Rs 1950. Find the cost of 2 chairs and 1 table.

4 tables and 3 chairs, together, cost Rs 2,250 and 3 tables and 4 chairs cost Rs 1950. Find the cost of 2 chairs and 1 table.

3 bags and 4 pens together cost Rs 257 whereas 4 bags and 3 pens together cost R 324.
Find the total cost of 1 bag and 10 pens.

3 bags and 4 pens together cost Rs 257 whereas 4 bags and 3 pens together cost R 324.
Find the total cost of 1 bag and 10 pens.

5 books and 7 pens together cost Rs 79 whereas 7 books and 5 pens together cost Rs 77. Find the total cost of 1 book and 2 pens.

5 books and 7 pens together cost Rs 79 whereas 7 books and 5 pens together cost Rs 77. Find the total cost of 1 book and 2 pens.

A and B each have a certain number of mangoes. A says to B, “if you give 30 of your mangoes, I will have twice as many as left with you.” B replies, “if you give me 10, I will have thrice as many as left with you.” How many mangoes does each have?

A and B each have a certain number of mangoes. A says to B, “if you give 30 of your mangoes, I will have twice as many as left with you.” B replies, “if you give me 10, I will have thrice as many as left with you.” How many mangoes does each have?

On selling a T.V. at 5%gain and a fridge at 10% gain, a shopkeeper gains Rs 2000. But if he sells the T.V. at 10% gain and the fridge at 5% loss. He gains Rs 1500 on the transaction. Find the actual prices of T.V. and fridge.

On selling a T.V. at 5%gain and a fridge at 10% gain, a shopkeeper gains Rs 2000. But if he sells the T.V. at 10% gain and the fridge at 5% loss. He gains Rs 1500 on the transaction. Find the actual prices of T.V. and fridge.

The coach of a cricket team buys 7 bats and 6 balls for Rs 3800. Later, he buys 3 bats and 5 balls for Rs 1750. Find the cost of each bat and each ball.

The coach of a cricket team buys 7 bats and 6 balls for Rs 3800. Later, he buys 3 bats and 5 balls for Rs 1750. Find the cost of each bat and each ball.

One says, “Give me a hundred, friend! I shall then become twice as rich as you.” The other replies, “If you give me ten, I shall be six times as rich as you.” Tell me what is the amount of their respective capital

One says, “Give me a hundred, friend! I shall then become twice as rich as you.” The other replies, “If you give me ten, I shall be six times as rich as you.” Tell me what is the amount of their respective capital

A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.

A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs 27 for a book kept for seven days, while Susy paid Rs 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.

R.D. Sharma 10 Mathematics

10 Mathematics

R.D. Sharma solutions for Class 10


S