Account
It's free!

User


Login
Register


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

NCERT solutions Physics Class 11 Part 2 chapter 12 Thermodynamics

Chapters

NCERT Physics Class 11 Part 2

Physics Textbook for Class 11 Part 2

Chapter 12 - Thermodynamics

Pages 0 - 317

In changing the state of a gas adiabatically from an equilibrium state to another equilibrium state B, an amount of work equal to 22.3 J is done on the system. If the gas is taken from state to via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case? (Take 1 cal = 4.19 J)

A geyser heats water flowing at the rate of 3.0 litres per minute from 27 °C to 77 °C. If the geyser operates on a gas burner, what is the rate of consumption of the fuel if its heat of combustion is 4.0 × 104 J/g?

What amount of heat must be supplied to 2.0 x 10-2 kg of nitrogen (at room temperature) to raise its temperature by 45 °C at constant pressure? (Molecular mass of N2 = 28; R = 8.3 J mol-1 K-1.)

Explain why Two bodies at different temperatures T1 and T2, if brought in thermal contact, do not necessarily settle to the mean temperature (T1 + T2)/2.

The coolant in a chemical or a nuclear plant (i.e., the liquid used to prevent the different parts of a plant from getting too hot) should have high specific heat.

Explain why Air pressure in a car tyre increases during driving.

Explain why The climate of a harbour town is more temperate than that of a town in a desert at the same latitude.

A cylinder with a movable piston contains 3 moles of hydrogen at standard temperature and pressure. The walls of the cylinder are made of a heat insulator, and the piston is insulated by having a pile of sand on it. By what factor does the pressure of the gas increase if the gas is compressed to half its original volume?

In changing the state of a gas adiabatically from an equilibrium state to another equilibrium state B, an amount of work equal to 22.3 J is done on the system. If the gas is taken from state to via a process in which the net heat absorbed by the system is 9.35 cal, how much is the net work done by the system in the latter case? (Take 1 cal = 4.19 J)

Two cylinders and of equal capacity are connected to each other via a stopcock. contains a gas at standard temperature and pressure. is completely evacuated. The entire system is thermally insulated. The stopcock is suddenly opened. Answer the following:

(a) What is the final pressure of the gas in and B?

(b) What is the change in internal energy of the gas?

(c) What is the change in the temperature of the gas?

(d) Do the intermediate states of the system (before settling to the final equilibrium state) lie on its P-V-T surface?

A steam engine delivers 5.4×10J of work per minute and services 3.6 × 10J of heat per minute from its boiler. What is the efficiency of the engine? How much heat is wasted per minute?

An electric heater supplies heat to a system at a rate of 100W. If the system performs work at a rate of 75 Joules per second. At what rate is the internal energy increasing?

A thermodynamic system is taken from an original state to an intermediate state by the linear process shown in Figure

Its volume is then reduced to the original value from E to F by an isobaric process. Calculate the total work done by the gas from D to E to F

A refrigerator is to maintain eatables kept inside at 9°C. If the room temperature is 36° C, calculate the coefficient of performance.

In an experiment on the specific heat of a metal, a 0.20 kg block of the metal at 150 °C is dropped in a copper calorimeter (of water equivalent 0.025 kg) containing 150 cm3 of water at 27 °C. The final temperature is 40 °C. Compute the specific heat of the metal. If heat losses to the surroundings are not negligible, is your answer greater or smaller than the actual value for the specific heat of the metal?

Given below are observations on molar specific heats at room temperature of some common gases.

Gas

Molar specific heat (Cv)

(cal mol–1 K–1)

Hydrogen 4.87
Nitrogen 4.97
Oxygen 5.02
Nitric oxide 4.99
Carbon monoxide 5.01
Chlorine 6.17

The measured molar specific heats of these gases are markedly different from those for monatomic gases. Typically, molar specific heat of a monatomic gas is 2.92 cal/mol K. Explain this difference. What can you infer from the somewhat larger (than the rest) value for chlorine?

A child running a temperature of 101°F is given an antipyrin (i.e. a medicine that lowers fever) which causes an increase in the rate of evaporation of sweat from his body. If the fever is brought down to 98 °F in 20 min, what is the average rate of extra evaporation caused, by the drug? Assume the evaporation mechanism to be the only way by which heat is lost. The mass of the child is 30 kg. The specific heat of human body is approximately the same as that of water, and latent heat of evaporation of water at that temperature is about 580 cal g–1.

NCERT Physics Class 11 Part 2

Physics Textbook for Class 11 Part 2
S