Chapters
Chapter 2: मात्रक और मापन
Chapter 3: सरल रेखा में गति
Chapter 4: समतल में गति
Chapter 5: गति के नियम
Chapter 6: कार्य, ऊर्जा और शक्ति
Chapter 7: कणों के निकाय तथा घूर्णी गति
Chapter 8: गुरुत्वाकर्षण
Chapter 9: ठोसों के यांत्रिक गुण
Chapter 10: तरलों के यांत्रिक गुण
Chapter 11: द्रव्य के तापीय गुण
Chapter 12: ऊष्मागतिकी
Chapter 13: अणुगति सिद्धांत
Chapter 14: दोलन
Chapter 15: तरंगें
![NCERT solutions for Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] chapter 14 - दोलन NCERT solutions for Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] chapter 14 - दोलन - Shaalaa.com](/images/physics-part-1-and-2-class-11-bhautiki-bhaaga-1-v-2-kksaa-11-vin_6:33cfbae53013448a9bdad9b4170987d6.jpg)
Chapter 14: दोलन
NCERT solutions for Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] Chapter 14 दोलन अभ्यास [Pages 375 - 380]
नीचे दिए गए उदाहरण में कौन आवर्ती गति को निरूपित करता है?
किसी तैराक द्वारा नदी के एक तट से दूसरे तट तक जाना और अपनी एक वापसी यात्रा पूरी करना।
नीचे दिए गए उदाहरण में कौन आवर्ती गति को निरूपित करता है?
किसी स्वतंत्रतापूर्वक लटकाए गए दंड चुंबक को उसकी N-S दिशा से विस्थापित कर छोड़ देना।
नीचे दिए गए उदाहरण में कौन आवर्ती गति को निरूपित करता है?
अपने द्रव्यमान केंद्र के परितः घूर्णी गति करता कोई हाइड्रोजन अणु।
नीचे दिए गए उदाहरण में कौन आवर्ती गति को निरूपित करता है?
किसी कमान से छोड़ा गया तीर।
नीचे दिए गए उदाहरण में कौन (लगभग) सरल आवर्त गति को तथा कौन आवर्ती परंतु सरल आवर्त गति निरूपित नहीं करते हैं?
पृथ्वी की अपने अक्ष के परितः घूर्णन गति।
नीचे दिए गए उदाहरण में कौन (लगभग) सरल आवर्त गति को तथा कौन आवर्ती परंतु सरल आवर्त गति निरूपित नहीं करते हैं?
किसी U-नली में दोलायमान पारे के स्तंभ की गति।
नीचे दिए गए उदाहरण में कौन (लगभग) सरल आवर्त गति को तथा कौन आवर्ती परंतु सरल आवर्त गति निरूपित नहीं करते हैं?
किसी चिकने वक्रीय कटोरे के भीतर एक बॉल बेयरिंग की गति जब उसे निम्नतम बिंदु से कुछ ऊपर के बिंदु से मुक्त रूप से छोड़ा जाए।
दिए गए उदाहरण में कौन (लगभग) सरल आवर्त गति को तथा कौन आवर्ती परंतु सरल आवर्त गति निरूपित नहीं करते हैं?
किसी बहुपरमाणुक अणु की अपनी साम्यावस्था की स्थिति के परितः व्यापक कंपन।
चित्र में किसी कण की रैखिक गति के लिए चार x - t आरेख दिए गए हैं। इनमें से कौन-सा आरेख आवर्ती गति का निरूपण करता है? उस गति का आवर्तकाल क्या है? (आवर्ती गति वाली गति का)।
(a)
(b)
(c)
(d)
नीचे दिए गए समय के फलन में कौन (a) सरल आवर्त गति (b) आवर्ती परंतु सरल आवर्त गति नहीं, तथा (c) अनावर्ती गति का निरूपण करते हैं। आवर्ती गति का आवर्तकाल ज्ञात कीजिए: (ω कोई धनात्मक अचर है।)
sin ωt - cos ωt
नीचे दिए गए समय के फलन में कौन (a) सरल आवर्त गति (b) आवर्ती परन्तु सरल आवर्त गति नहीं, तथा (c) अनावर्ती गति का निरूपण करते हैं। प्रत्येक आवर्ती गति का आवर्तकाल ज्ञात कीजिए: (ω कोई धनात्मक अचर है।)
sin3 ωt
नीचे दिए गए समय के फलनों में कौन (a) सरल आवर्त गति (b) आवर्ती परन्तु सरल आवर्त गति नहीं, तथा (e) अनावर्ती गति का निरूपण करते हैं। प्रत्येक आवर्ती गति का आवर्तकाल ज्ञात कीजिए: (ω कोई धनात्मक अचर हैं।)
`3 "cos" (pi/4 - 2 "ωt")`
नीचे दिए गए समय के फलनों में कौन (a) सरल आवर्त गति (b) आवर्ती परन्तु सरल आवर्त गति नहीं, तथा (c) अनावर्ती गति का निरूपण करते हैं। प्रत्येक आवर्ती गति का आवर्तकाल ज्ञात कीजिए: (ω कोई धनात्मक अचर हैं।)
cos ωt + cos 3 ωt + cos 5 ωt
नीचे दिए गए समय के फलनों में कौन (a) सरल आवर्त गति (b) आवर्ती परंतु सरल आवर्त गति नहीं, तथा (c) अनावर्ती गति का निरूपण करते हैं। प्रत्येक आवर्ती गति का आवर्तकाल ज्ञात कीजिए: (ω कोई धनात्मक अचर हैं।)
exp(- ω2t2)
नीचे दिए गए समय के फलनों में कौन (a) सरल आवर्त गति (b) आवर्ती परंतु सरल आवर्त गति नहीं, तथा (c) अनावर्ती गति का निरूपण करते हैं। प्रत्येक आवर्ती गति का आवर्तकाल ज्ञात कीजिए: (ω कोई धनात्मक अचर हैं।)
1 + ωt + ω2t2
कोई कण एक-दूसरे से 10 cm दूरी पर स्थित दो बिंदुओं A तथा B के बीच रैखिक सरल आवर्त गति कर रहा है। A से B की ओर की दिशा को धनात्मक दिशा मानकर वेग, त्वरण तथा कण पर लगे बल के चिह्न ज्ञात कीजिए जबकि यह कण
- A सिरे पर है,
- B सिरे पर है।
- A की ओर जाते हुए AB के मध्य बिंदु पर है,
- A की ओर जाते हुए 8 से 2 cm दूर है,
- B की ओर जाते हुए से 3 cm दूर है, तथा
- A की ओर जाते हुए 8 से 4 cm दूर है।
नीचे दिए गए किसी कण के त्वरण तथा विस्थापन के बीच संबंधों में से किससे सरल आवर्त गति संबद्ध है:
- a = 0.7 x
- a = -200x²
- a = -10
- a = 100x³
सरल आवर्त गति करते किसी कण की गति का वर्णन नीचे दिए गए विस्थापन फलन द्वारा किया जाता है,
x(t) = A cos (ωt + φ)
यदि कण की आरंभिक (t = 0) स्थिति 1 cm तथा उसका आरंभिक वेग πcms-1 है। तो कण का आयाम तथा आरंभिक कला कोण क्या है? कण की कोणीय आवृत्ति πS-1 है। यदि सरल आवर्त गति का वर्णन करने के लिए कोज्या (cos) फलन के स्थान पर हम ज्या (sin) फलन चुनें; x = B sin (ωt + α), तो उपर्युक्त आरंभिक प्रतिबंधों में कण का आयाम तथा आरंभिक कला कोण क्या होगा?
किसी कमानीदार तुला का पैमाना 0 से 50 kg तक अंकित है और पैमाने की लंबाई 20 cm है। इस तुला से लटकाया गया कोई पिण्ड, जब विस्थापित करके मुक्त किया जाता है, 0.6 s के आवर्तकाल से दोलन करता है। पिण्ड का भार कितना है?
1200 Nm-1 कमानी-स्थिरांक की कोई कमानी चित्र में दर्शाए अनुसार किसी क्षैतिज मेज से जड़ी है। कमानी के मुक्त। सिरे से 3kg द्रव्यमान का कोई पिण्ड जुड़ा है। इस पिण्ड को एक ओर 2.0 cm दूरी तक खींचकर मुक्त किया जाता है,
- पिण्ड के दोलन की आवृत्ति,
- पिण्ड का अधिकतम त्वरण, तथा
- पिण्ड की अधिकतम चाल ज्ञात कीजिए।
अभ्यास प्रश्न 14.9 में, मान लीजिए जब कमानी अतानित अवस्था में है तब पिण्ड की स्थिति x = 0 है तथा बाएँ से दाएँ की दिशा x-अक्ष की धनात्मक दिशा है। दोलन करते पिण्ड के विस्थापन x को समय के फलन के रूप में दर्शाइए, जबकि विराम घड़ी को आरंभ (t = 0) करते समय पिण्ड
(a) अपनी माध्य स्थिति
(b) अधिकतम तानित स्थिति, तथा
(c) अधिकतम संपीडन की स्थिति पर है।
सरल आवर्त गति के लिए ये फलन एक-दूसरे से आवृत्ति में, आयाम में अथवा आरंभिक कला में किस रूप में भिन्न है ?
चित्र में दिए गए दो आरेख दो वर्तुल गतियों के तद्नुरूपी हैं। प्रत्येक आरेख पर वृत्त की त्रिज्या परिक्रमण-काल, आरंभिक स्थिति और परिक्रमण की दिशा दर्शाई गई है। प्रत्येक प्रकरण में, परिक्रमण करते कण के त्रिज्य-सदिश के x-अक्ष पर प्रक्षेप की तदनुरूपी सरल आवर्त गति ज्ञात कीजिए।
नीचे दी गई प्रत्येक सरल आवर्त गति के लिए तदनुरूपी निर्देश वृत्त का आरेख खींचिएं। घूर्णी कण की आरंभिक (t = 0) स्थिति, वृत्त की त्रिज्या तथा कोणीय चाल दर्शाइए। सुगमता के लिए प्रकरण में परिक्रमण की दिशा वामावर्त लीजिए। (x को cm में तथा t को s में लीजिए।)
`x = -2 "sin"(3"t" + pi/3) `
नीचे दी गई प्रत्येक सरल आवर्त गति के लिए तदनुरूपी निर्देश वृत्त का आरेख खींचिएं। घूर्णी कण की आरंभिक (t = 0) स्थिति, वृत्त की त्रिज्या तथा कोणीय चाल दर्शाइए। सुगमता के लिए प्रकरण में परिक्रमण की दिशा वामावर्त लीजिए। (x को cm में तथा t को s में लीजिए।)
`x = "cos" (pi/6 - "t")`
नीचे दी गई प्रत्येक सरल आवर्त गति के लिए तदनुरूपी निर्देश वृत्त का आरेख खींचिएं। घूर्णी कण की आरंभिक (t = 0) स्थिति, वृत्त की त्रिज्या तथा कोणीय चाल दर्शाइए। सुगमता के लिए प्रकरण में परिक्रमण की दिशा वामावर्त लीजिए। (x को cm में तथा t को s में लीजिए।)।
x = 3sin `((2pi"t")/4)`
नीचे दी गई प्रत्येक सरल आवर्त गति के लिए तदनुरूपी निर्देश वृत्त का आरेख खींचिएं। घूर्णी कण की आरंभिक (t = 0) स्थिति, वृत्त की त्रिज्या तथा कोणीय चाल दर्शाइए। सुगमता के लिए प्रत्येक प्रकरण में परिक्रमण की दिशा वामावर्त लीजिए। (x को cm में तथा t को s में लीजिए।)
x = 2 cos πt
चित्र (a) में k बल-स्थिरांक की किसी कमानी के एक सिरे को किसी दृढे आधार से जकड़ा तथा दूसरे मुक्त सिरे से एक द्रव्यमान m जुड़ा दर्शाया गया है। कमानी के मुक्त सिरे पर बल F आरोपित करने से कमानी तन जाती है चित्र (b) में उसी कमानी के दोनों मुक्त सिरों से द्रव्यमान जुड़ा दर्शाया गया है। कमानी के दोनों सिरों को चित्र में समान बल F द्वारा तानित किया गया है।
(a)
(b)
- दोनों प्रकरणों में कमानी का अधिकतम विस्तार क्या है?
- यदि (a) का द्रव्यमान तथा (b) के दोनों द्रव्यमानों को मुक्त छोड़ दिया जाए, तो प्रत्येक प्रकरण में दोलन का आवर्तकाल ज्ञात कीजिए।
किसी रेलगाड़ी के इंजन के सिलिंडर हैड में पिस्टन का स्ट्रोक (आयाम को दो गुना) 1.0 m का है। यदि पिस्टन 200 rad/min की कोणीय आवृत्ति से सरल आवर्त गति करता है तो उसकी अधिकतम चाल कितनी है?
चंद्रमा के पृष्ठ पर गुरुत्वीय त्वरण 1.7 ms-2 है। यदि किसी सरल लोलक का पृथ्वी के पृष्ठ पर आवर्तकाल 3.5 s है तो उसका चंद्रमा के पृष्ठ पर आवर्तकाल कितना होगा? (पृथ्वी के पृष्ठ पर g = 9.8 ms-2)
नीचे दिए गए प्रश्नों के उत्तर दीजिए
किसी कण की सरल आवर्त गति के आवर्तकाल का मान उस कण के द्रव्यमान तथा बल-स्थिरांक पर निर्भर करता है: `"T"=2\pi \sqrt { \frac { "m" }{ "k" }]`। कोई सरल लोलक सन्निकट सरल आवर्त गति करता है। तब फिर किसी लोलक का आवर्तकाल लोलक के द्रव्यमान पर निर्भर क्यों नहीं करता?
किसी सरल लोलक की गति छोटे कोण के सभी दोलनों के लिए सन्निकट सरल आवर्त गति होती है। बड़े कोणों के दोलनों के लिए एक अधिक गूढ विश्लेषण यह दर्शाता है कि का मान `2\pi \sqrt { \frac { "l" }{ "g" } }` से अधिक होता है। इस परिणाम को समझने के लिए किसी गुणात्मक कारण का चिंतन कीजिए।
कोई व्यक्ति कलाई घड़ी बाँधे किसी मीनार की चोटी से गिरता है। क्या मुक्त रूप से गिरते समय उसकी घड़ी यथार्थ समय बताती है?
गुरुत्व बल के अंतर्गत मुक्त रूप से गिरते किसी केबिन में लगे सरल लोलक के दोलन की आवृत्ति क्या होती है?
किसी कार की छत से l लंबाई का कोई सरल लोलक, जिसके लोलक का द्रव्यमान M है, लटकाया गया है। कार R त्रिज्या की वृत्तीय पथ पर एकसमान चाल υ से गतिमान है। यदि लोलक त्रिज्य दिशा में अपनी साम्यावस्था की स्थिति के इधर-उधर छोटे दोलन करता है तो इसका आवर्तकाल क्या होगा?
आधार क्षेत्रफल A तथा ऊँचाई h के एक कॉर्क का बेलनाकार टुकड़ा ρ1 घनत्व के किसी द्रव में तैर रहा है। कॉर्क को थोड़ा नीचे दबाकर स्वतंत्र छोड़ देते हैं, यह दर्शाइए कि कॉर्क ऊपर-नीचे सरल आवर्त दोलन करता है जिसका आवर्तकाल `"T"=2\pi \sqrt { \frac { "h"\rho }{ \rho _{ 1 }"g" } } ` है।
यहाँ ρ कॉर्क का घनत्व है (द्रव की श्यानता के कारण अवमंदन को नगण्य मानिए।)
पारे से भरी किसी U नली का एक सिरा किसी चूषण पंप से जुड़ा है तथा दूसरा सिरा वायुमंडल में खुला छोड़ दिया गया है। दोनों स्तंभों में कुछ दाबांतर बनाए रखा जाता है। यह दर्शाइए कि जब चूषण पंप को हटा देते हैं, तब U नली में पारे का स्तंभ सरल आवर्त गति करता है।
अतिरिक्त अभ्यास
चित्र में दर्शाए अनुसार V आयतन के किसी वायु कक्ष की ग्रीवा (गर्दन) की अनुप्रस्थ कोर्ट का क्षेत्रफल α है। इस ग्रीवा में m द्रव्यमान की कोई गोली बिना किसी घर्षण के ऊपर-नीचे गति कर सकती है। यह दर्शाइए कि जब गोली को थोड़ा नीचे दबाकर मुक्त छोड़ देते हैं तो वह सरल आवर्त गति करती है। दाब-आयतन विचरण को समतापी मानकर दोलनों के आवर्तकाल का व्यंजक ज्ञात कीजिए ।
आप किसी 3000 kg द्रव्यमान के स्वचालित वाहन पर सवार हैं। यह मानिए कि आप इस वाहन की निलंबन प्रणाली के दोलनी अभिलक्षणों का परीक्षण कर रहे हैं। जब समस्त वाहन इस पर रखा जाता है, तब निलंबन 15 cm आनमित होता है। साथ ही, एक पूर्ण दोलन की अवधि में दोलन के आयाम में 50% घटोतरी हो जाती है, निम्नलिखित के मान का आकलन कीजिए :
कमानी स्थिरांक
आप किसी 3000 kg द्रव्यमान के स्वचालित वाहन पर सवार हैं। यह मानिए कि आप इस वाहन की निलंबन प्रणाली के दोलनी अभिलक्षणों का परीक्षण कर रहे हैं। जब समस्त वाहन इस पर रखा जाता है, तब निलंबन 15 cm आनमित होता है। साथ ही, एक पूर्ण दोलन की अवधि में दोलन के आयाम में 50% घटोतरी हो जाती है, निम्नलिखित के मान का आकलन कीजिए :
कमानी तथा एक पहिए के प्रघात अवशोषक तंत्र के लिए अवमंदन स्थिरांक यह मानिए कि प्रत्येक पहिया 750 kg द्रव्यमान वहन करता है।
यह दर्शाइए कि रैखिक सरल आवर्त गति करते किसी कण के लिए दोलन की किसी अवधि की औसत गतिज ऊर्जा उसी अवधि की औसत स्थितिज ऊर्जा के समान होती है।
10 kg द्रव्यमान की कोई वृत्तीय चक्रिका अपने केंद्र से जुड़े किसी तार से लटकी है। चक्रिका को घूर्णन देकर तार में ऐंठन उत्पन्न करके मुक्त कर दिया जाता है। मरोड़ी दोलन का आवर्तकाल 1.5 s है। चक्रिका की त्रिज्या 15 cm है। तार का मरोड़ी कमानी नियतांक ज्ञात कीजिए। [मरोड़ी कमानी नियतांक α संबंध J = -αθ द्वारा परिभाषित किया जाता है, यहाँ J प्रत्यानयन बल युग्म है तथा θ ऐंठन कोण है।
कोई वस्तु 5 cm के आयाम तथा 0.2 s के आवृत्ति से सरल आवृत्ति गति करती है। वस्तु का त्वरण तथा वेग ज्ञात कीजिए जब वस्तु का विस्थापन 5 cm हो।
कोई वस्तु 5 cm के आयाम तथा 0.2 s के आवृत्ति से सरल आवृत्ति गति करती है। वस्तु का त्वरण तथा वेग ज्ञात कीजिए जब वस्तु का विस्थापन 3 cm हो।
कोई वस्तु 5 cm के आयाम तथा 0.2 s के आवृत्ति से सरल आवृत्ति गति करती है। वस्तु का त्वरण तथा वेग ज्ञात कीजिए जब वस्तु का विस्थापन 0 cm हो।
किसी कमानी से लटका एक पिण्ड एक क्षैतिज तल में कोणीय वेग ω से घर्षण या अवमंदन रहित दोलन कर सकता है। इसे जब x0 दूरी तक खींचते हैं और खींचकर छोड़ देते हैं तो यह संतुलन केंद्र से समय t = 0 पर v0 वेग से गुजरता है। प्राचल ω,x0, तथा v0 के पदों में परिणामी दोलन का आयाम ज्ञात कीजिए। [संकेतः समीकरण x = acos (ωt + θ) से प्रारंभ कीजिए। ध्यान रहे कि प्रारंभिक वेग ऋणात्मक है।]
Chapter 14: दोलन
![NCERT solutions for Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] chapter 14 - दोलन NCERT solutions for Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] chapter 14 - दोलन - Shaalaa.com](/images/physics-part-1-and-2-class-11-bhautiki-bhaaga-1-v-2-kksaa-11-vin_6:33cfbae53013448a9bdad9b4170987d6.jpg)
NCERT solutions for Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] chapter 14 - दोलन
NCERT solutions for Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] chapter 14 (दोलन) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] solutions in a manner that help students grasp basic concepts better and faster.
Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.
Concepts covered in Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] chapter 14 दोलन are दोलन का परिचय, दोलन और आवर्ती गति, सरल आवर्त गति, सरल आवर्त गति तथा एकसमान वर्तुल गति, सरल आवर्त गति में वेग तथा त्वरण, सरल आवर्त गति के लिए बल का नियम, सरल आवर्त गति में ऊर्जा, सरल आवर्त गति निष्पादित करने वाले कुछ निकाय, कमानी के दोलन, सरल लोलक, अवमंदित सरल आवर्त गति, प्रणोदित दोलन तथा अनुनाद.
Using NCERT Class 11 [११ वीं कक्षा] solutions दोलन exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in NCERT Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 11 [११ वीं कक्षा] prefer NCERT Textbook Solutions to score more in exam.
Get the free view of chapter 14 दोलन Class 11 [११ वीं कक्षा] extra questions for Physics Part 1 and 2 Class 11 [भौतिकी भाग १ व २ कक्षा ११ वीं] and can use Shaalaa.com to keep it handy for your exam preparation