CBSE (Commerce) Class 11CBSE
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

NCERT solutions Mathematics Class 11 chapter 5 Complex Numbers and Quadratic Equations

Chapters

NCERT Mathematics Class 11

Mathematics Textbook for Class 11

Chapter 5 - Complex Numbers and Quadratic Equations

Pages 103 - 104

Express the given complex number in the form a + ib: `(5i) (- 3/5 i)`

Q 1 | Page 103

Express the given complex number in the form a + ibi9 + i19

Q 2 | Page 103

Express the given complex number in the form a + ibi–39

Q 3 | Page 103

Express the given complex number in the form a + ib: 3(7 + i7) + i(7 + i7)

Q 4 | Page 104

Express the given complex number in the form a + ib: (1 – i) – (–1 + i6)

Q 5 | Page 104

Express the given complex number in the form a + ib: `(1/5 + i 2/5) - (4 + i 5/2)`

Q 6 | Page 104

Express the given complex number in the form a + ib : `[(1/3 + i 7/3) + (4 + i 1/3)] -(-4/3 + i)`

Q 7 | Page 104

Express the given complex number in the form a + ib:  (1 – i)4

Q 8 | Page 104

Express the given complex number in the form a + ib: `(1/3 + 3i)^3`

Q 9 | Page 104

Express the given complex number in the form a + ib: `(-2 - 1/3 i)^3`

Q 10 | Page 104

Find the multiplicative inverse of the complex number 4 – 3i

Q 11 | Page 104

Find the multiplicative inverse of the complex number `sqrt5 + 3i`

Q 12 | Page 104

Find the multiplicative inverse of the complex number –i

Q 13 | Page 104

Express the following expression in the form of a + ib.

`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`

Q 14 | Page 104

Page 108

Find the modulus and the argument of the complex number  `z = – 1 – isqrt3`

Q 1 | Page 108

Find the modulus and the argument of the complex number `z =- sqrt3 + i`

Q 2 | Page 108

Convert the given complex number in polar form: 1 – i

Q 3 | Page 108

Convert the given complex number in polar form: – 1 + i

Q 4 | Page 108

Convert the given complex number in polar form: – 1 – i

Q 5 | Page 108

Convert the given complex number in polar form: –3

Q 6 | Page 108

Convert the given complex number in polar form `sqrt3 + i`

Q 7 | Page 108

Convert the given complex number in polar form: i

Q 8 | Page 108

Page 109

Solve the equation x2 + 3 = 0

Q 1 | Page 109

Solve the equation 2x2 + x + 1 = 0

Q 2 | Page 109

Solve the equation x2 + 3x + 9 = 0

Q 3 | Page 109

Solve the equation –x2 + x – 2 = 0

Q 4 | Page 109

Solve the equation x2 + 3x + 5 = 0

Q 5 | Page 109

Solve the equation `x^2 + x + 1/sqrt2 = 0`

Q 5.3 | Page 109

Solve the equation x2 – x + 2 = 0

Q 6 | Page 109

Solve the equation  `sqrt2x^2 + x + sqrt2 = 0`

Q 7 | Page 109

Solve the equation  `sqrt3 x^2 - sqrt2x + 3sqrt3 = 0`

Q 8 | Page 109

Solve the equation  `x^2 + x/sqrt2 + 1 = 0`

Q 10 | Page 109

Pages 112 - 113

Evaluate : `[i^18 + (1/i)^25]^3`

Q 1 | Page 112

For any two complex numbers z1 and z2, prove that Re (z1z2) = Re zRe z2 – Im z1 Im z2

Q 2 | Page 112

Reduce  `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.

Q 3 | Page 112

If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`

Q 4 | Page 112

Convert the following in the polar form:

`(1+7i)/(2-i)^2`

Q 5.1 | Page 112

Convert the following in the polar form:

`(1+3i)/(1-2i)`

Q 5.2 | Page 112

Solve the equation `3x^2 - 4x + 20/3 = 0`

Q 6 | Page 112

Solve the equation   `x^2 -2x + 3/2 = 0`  

Q 7 | Page 112

Solve the equation   `x^2 -2x + 3/2 = 0`  

Q 7 | Page 112

Solve the equation 27x2 – 10+ 1 = 0

Q 8 | Page 112

Solve the equation 21x2 – 28+ 10 = 0

Q 9 | Page 113

If z1 = 2 – i,  z2 = 1 + i, find `|(z_1 + z_2 + 1)/(z_1 - z_2 + 1)|`

Q 10 | Page 113

If a + ib  = `(x + i)^2/(2x^2 + 1)` prove that a2 + b2 = `(x^2 + 1)^2/(2x + 1)^2`

Q 11 | Page 113

Let z1 = 2 – i, z2 = –2 + i. Find Re`((z_1z_2)/barz_1)`

Q 12.1 | Page 113

Let z1 = 2 – i, z2 = –2 + i. Find `Im(1/(z_1barz_1))`

Q 12.2 | Page 113

Find the modulus and argument of the complex number `(1 + 2i)/(1-3i)`

 
Q 13 | Page 113

Find the real numbers x and y if (x – iy) (3 + 5i) is the conjugate of –6 – 24i.

Q 14 | Page 113

Find the modulus  of  `(1+i)/(1-i) - (1-i)/(1+i)`

Q 15 | Page 113

If (x + iy)3 = u + iv, then show that `u/x + v/y  =4(x^2 - y^2)`

Q 16 | Page 113

If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`

Q 17 | Page 113

Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.

 
Q 18 | Page 113

If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.

Q 19 | Page 113

if `((1+i)/(1-i))^m` =   1, then find the least positive integral value of m.

Q 20 | Page 113

NCERT Mathematics Class 11

Mathematics Textbook for Class 11
S