Advertisement Remove all ads

NCERT solutions for Mathematics Exemplar Class 11 chapter 3 - Trigonometric Functions [Latest edition]

Chapters

Mathematics Exemplar Class 11 - Shaalaa.com
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

Chapter 3: Trigonometric Functions

Solved ExamplesExercise
Advertisement Remove all ads
Solved Examples [Pages 39 - 51]

NCERT solutions for Mathematics Exemplar Class 11 Chapter 3 Trigonometric FunctionsSolved Examples [Pages 39 - 51]

Short Answer

Solved Examples | Q 1 | Page 39

A circular wire of radius 3 cm is cut and bent so as to lie along the circumference of a hoop whose radius is 48 cm. Find the angle in degrees which is subtended at the centre of hoop.

Solved Examples | Q 2 | Page 40

If A = cos2θ + sin4θ for all values of θ, then prove that `3/4` ≤ A ≤ 1.

Solved Examples | Q 3 | Page 40

Find the value of `sqrt(3)` cosec 20° – sec 20°

Solved Examples | Q 4 | Page 41

If θ lies in the second quadrant, then show that `sqrt((1 - sin theta)/(1 + sin theta)) + sqrt((1 + sin theta)/(1 - sin theta))` = −2sec θ

Solved Examples | Q 5 | Page 41

Find the value of tan 9° – tan 27° – tan 63° + tan 81°

Solved Examples | Q 6 | Page 41

Prove that `(sec8 theta - 1)/(sec4 theta - 1) = (tan8 theta)/(tan2 theta)`

Solved Examples | Q 7 | Page 42

Solve the equation sin θ + sin 3θ + sin 5θ = 0

Solved Examples | Q 8 | Page 42

Solve 2 tan2x + sec2x = 2 for 0 ≤ x ≤ 2π

Long Answer

Solved Examples | Q 9 | Page 43

Find the value of `(1 + pi/8)(1 + cos  (3pi)/8)(1 + cos  (5pi)/8)(1 + cos  (7pi)/8)`

Solved Examples | Q 10 | Page 43

If x cos θ = `y cos (theta + (2pi)/3) = z cos (theta + (4pi)/3)`, then find the value of xy + yz + zx.

Solved Examples | Q 11 | Page 44

If α and β are the solutions of the equation a tan θ + b sec θ = c, then show that tan (α + β) = `(2ac)/(a^2 - c^2)`.

Solved Examples | Q 12 | Page 46

Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β) = cos 2α

Solved Examples | Q 13 | Page 46

If angle θ is divided into two parts such that the tangent of one part is k times the tangent of other, and Φ is their difference, then show that sin θ = `(k + 1)/(k - 1)` sin Φ

Solved Examples | Q 14 | Page 47

Solve `sqrt(3)` cos θ + sin θ = `sqrt(2)`

Objective Type Questions from 15 to 19

Solved Examples | Q 15 | Page 47

If tan θ = `(-4)/3`, then sin θ is ______.

  • `(-4)/5` but not `4/5`

  • `(-4)/5` or `4/5`

  • `4/5` but not `- 4/5`

  • None of these

Solved Examples | Q 16 | Page 48

If sin θ and cos θ are the roots of the equation ax2 – bx + c = 0, then a, b and c satisfy the relation ______.

  • a2 + b2 + 2ac = 0

  • a2 – b2 + 2ac = 0

  • a2 + c2 + 2ab = 0

  • a2 – b2 – 2ac = 0

Solved Examples | Q 17 | Page 48

The greatest value of sin x cos x is ______.

  • 1

  • 2

  • `sqrt(2)`

  • `1/2`

Solved Examples | Q 18 | Page 48

The value of sin 20° sin 40° sin 60° sin 80° is ______.

  • `(-3)/16`

  • `5/16`

  • `3/16`

  • `1/16`

Solved Examples | Q 19 | Page 49

The value of `cos  pi/5 cos  (2pi)/5 cos  (4pi)/5 cos  (8pi)/5`  is ______.

  • `1/16`

  • 0

  • `(-1)/8`

  • `(-1)/16`

Fill in the blank:

Solved Examples | Q 20 | Page 50

If 3 tan (θ – 15°) = tan (θ + 15°), 0° < θ < 90°, then θ = ______.

State whether the following statement is True or False:

Solved Examples | Q 21 | Page 50

“The inequality `2^sintheta + 2^costheta ≥ 2^(1/sqrt(2))` holds for all real values of θ” 

  • True

  • False

Match the column C1 and C2

Solved Examples | Q 22 | Page 51
C1 C2
(a) `(1 - cosx)/sinx` (i) `cot^2  x/2`
(b) `(1 + cosx)/(1 - cosx)` (ii) `cot  x/2`
(c) `(1 + cosx)/sinx` (iii) `|cos x + sin x|`
(d) `sqrt(1 + sin 2x)` (iv) `tan  x/2`
Exercise [Pages 52 - 60]

NCERT solutions for Mathematics Exemplar Class 11 Chapter 3 Trigonometric FunctionsExercise [Pages 52 - 60]

Short Answer

Exercise | Q 1 | Page 52

Prove that `(tanA + secA  - 1)/(tanA - secA + 1) = (1 + sinA)/cosA`

Exercise | Q 2 | Page 52

If `(2sinalpha)/(1 + cosalpha + sinalpha)` = y, then prove that `(1 - cosalpha + sinalpha)/(1 + sinalpha)` is also equal to y.
`["Hint": "Express" (1 - cosalpha + sinalpha)/(1 + sinalpha) = (1 - cosalpha + sinalpha)/(1 + sinalpha) * (1 + cosalpha + sinalpha)/(1 + cosalpha + sinalpha)]`

Exercise | Q 3 | Page 52

If m sin θ = n sin(θ + 2α), then prove that tan(θ + α) cot α = `(m + n)/(m - n)`

[Hint: Express `(sin(theta + 2alpha))/sintheta = m/n` and apply componendo and dividendo]

Exercise | Q 4 | Page 52

If cos(α + β) = `4/5` and sin(α – β) = `5/13`, where α lie between 0 and `pi/4`, find the value of tan2α
[Hint: Express tan 2 α as tan(α + β + α – β)]

Exercise | Q 5 | Page 53

If tan x = `b/a`, then find the value of `sqrt((a + b)/(a - b)) + sqrt((a - b)/(a + b))`

Exercise | Q 6 | Page 53

Prove that cosθ `cos  theta/2 - cos 3theta cos  (9theta)/2` = sin 7θ sin 8θ.

[Hint: Express L.H.S. = `1/2[2costheta cos  theta/2 - 2 cos 3theta cos  (9theta)/2]`

Exercise | Q 7 | Page 53

If a cos θ + b sin θ = m and a sin θ – b cos θ = n, then show that a2 + b2 = m2 + n2 

Exercise | Q 8 | Page 53

Find the value of tan 22°30′.

[Hint: Let θ = 45°, use `tan  theta/2 = (sin  theta/2)/(cos  theta/2) = (2sin  theta/2 cos  theta/2)/(2cos^2  theta/2) = sintheta/(1 + costheta)`]

Exercise | Q 9 | Page 53

Prove that sin 4A = 4sinA cos3A – 4 cosA sin3A

Exercise | Q 10 | Page 53

If tanθ + sinθ = m and tanθ – sinθ = n, then prove that m2 – n2 = 4sinθ tanθ 
[Hint: m + n = 2tanθ, m – n = 2 sinθ, then use m2 – n2 = (m + n)(m – n)]

Exercise | Q 11 | Page 53

If tan(A + B) = p, tan(A – B) = q, then show that tan 2A = `(p + q)/(1 - pq)`

Exercise | Q 12 | Page 53

If cosα + cosβ = 0 = sinα + sinβ, then prove that cos 2α + cos 2β = – 2cos (α + β).
[Hint: (cosα + cosβ) 2 – (sinα + sinβ) 2 = 0]

Exercise | Q 13 | Page 53

If `(sin(x + y))/(sin(x - y)) = (a + b)/(a - b)`, then show that `tanx/tany = a/b`

Exercise | Q 14 | Page 53

If tanθ = `(sinalpha - cosalpha)/(sinalpha + cosalpha)`, then show that sinα + cosα = `sqrt(2)` cosθ.

[Hint: Express tanθ = `tan (alpha - pi/4) theta = alpha - pi/4`]

Exercise | Q 15 | Page 53

If sinθ + cosθ = 1, then find the general value of θ.

Exercise | Q 16 | Page 53

Find the most general value of θ satisfying the equation tan θ = –1 and cos θ = `1/sqrt(2)`.

Exercise | Q 17 | Page 54

If cotθ + tanθ = 2 cosecθ, then find the general value of θ.

Exercise | Q 18 | Page 54

If 2sin2θ = 3cosθ, where 0 ≤ θ ≤ 2π, then find the value of θ.

Exercise | Q 19 | Page 54

If secx cos5x + 1 = 0, where 0 < x ≤ `pi/2`, then find the value of x.

Long Answer

Exercise | Q 20 | Page 54

If sin(θ + α) = a and sin(θ + β) = b, then prove that cos 2(α – β) – 4ab cos(α – β) = 1 – 2a2 – 2b2 

Exercise | Q 21 | Page 54

If cos(θ + Φ) = m cos(θ – Φ), then prove that 1 tan θ = `(1 - m)/(1 + m) cot phi`

Exercise | Q 22 | Page 54

Find the value of the expression `3[sin^4 ((3pi)/2 - alpha) + sin^4 (3pi + alpha)] - 2[sin^6 (pi/2 + alpha) + sin^6 (5pi - alpha)]`

Exercise | Q 23 | Page 54

If a cos 2θ + b sin 2θ = c has α and β as its roots, then prove that tanα + tan β = `(2b)/(a + c)`.

Exercise | Q 24 | Page 54

If x = sec Φ – tan Φ and y = cosec Φ + cot Φ then show that xy + x – y + 1 = 0
[Hint: Find xy + 1 and then show that x – y = – (xy + 1)]

Exercise | Q 25 | Page 54

If θ lies in the first quadrant and cosθ = `8/17`, then find the value of cos(30° + θ) + cos(45° – θ) + cos(120° – θ).

Exercise | Q 26 | Page 54

Find the value of the expression `cos^4  pi/8 + cos^4  (3pi)/8 + cos^4  (5pi)/8 + cos^4  (7pi)/8`

[Hint: Simplify the expression to `2(cos^4  pi/8 + cos^4  (3pi)/8) = 2[(cos^2  pi/8 + cos^2  (3pi)/8)^2 - 2cos^2  pi/8 cos^2  (3pi)/8]`

Exercise | Q 27 | Page 55

Find the general solution of the equation 5cos2θ + 7sin2θ – 6 = 0

Exercise | Q 28 | Page 55

Find the general solution of the equation sinx – 3sin2x + sin3x = cosx – 3cos2x + cos3x

Exercise | Q 29 | Page 55

Find the general solution of the equation `(sqrt(3) - 1) costheta + (sqrt(3) + 1) sin theta` = 2

[Hint: Put `sqrt(3) - 1` r sinα, `sqrt(3) + 1` = r cosα which gives tanα = `tan(pi/4 - pi/6)` α = `pi/12`]

Objective Type Questions from 30 to 59

Exercise | Q 30 | Page 55

If sin θ + cosec θ = 2, then sin2θ + cosec2θ is equal to ______.

  • 1

  • 4

  • 2

  • None of these

Exercise | Q 31 | Page 55

If f(x) = cos2x + sec2x, then ______.

  • f(x) < 1

  • f(x) = 1

  • 2 < f(x) < 1

  • f(x) ≥ 2

Exercise | Q 32 | Page 55

If tan θ = `1/2` and tan Φ = `1/3`, then the value of θ + Φ is ______.

  • `pi/6`

  • `pi`

  • 0

  • `pi/4`

Exercise | Q 33 | Page 55

Which of the following is not correct?

  • sin θ = `-1/5`

  • cos θ = 1

  • sec θ = `1/2`

  • tan θ = 20

Exercise | Q 34 | Page 55

The value of tan 1° tan 2° tan 3° ... tan 89° is ______.

  • 0

  • 1

  • `1/2`

  • Not defined

Exercise | Q 35 | Page 56

The value of `(1 - tan^2 15^circ)/(1 + tan^2 15^circ)` is ______.

  • 1

  • `sqrt(3)`

  • `sqrt(3)/2`

  • 2

Exercise | Q 36 | Page 56

The value of cos 1° cos 2° cos 3° ... cos 179° is ______.

  • `1/sqrt(2)`

  • 0

  • 1

  • –1

Exercise | Q 37 | Page 56

If tan θ = 3 and θ lies in third quadrant, then the value of sin θ  ______.

  • `1/sqrt(10)`

  • `- 1/sqrt(10)`

  • `(-3)/sqrt(10)`

  • `3/sqrt(10)`

Exercise | Q 38 | Page 56

The value of tan 75° – cot 75° is equal to ______.

  • `2sqrt(3)`

  • `2 + sqrt(3)`

  • `2 - sqrt(3)`

  • 1

Exercise | Q 39 | Page 56

Which of the following is correct?

  • sin 1° > sin 1

  • sin 1° < sin 1

  • sin 1° = sin 1

  • sin 1° = `pi/18^circ  sin 1`

Exercise | Q 40 | Page 56

If tan α = `m/(m +  1)`, tan β = `1/(2m + 1)`, then α + β is equal to ______.

  • `pi/2`

  • `pi/3`

  • `pi/6`

  • `pi/4`

Exercise | Q 41 | Page 56

The minimum value of 3 cosx + 4 sinx + 8 is ______.

  • 5

  • 9

  • 7

  • 3

Exercise | Q 42 | Page 56

The value of tan 3A – tan 2A – tan A is equal to ______.

  • tan 3A tan 2A tan A

  • – tan 3A tan 2A tan A

  • tan A tan 2A – tan 2A tan 3A – tan 3A tan A

  • None of these

Exercise | Q 43 | Page 57

The value of sin(45° + θ) – cos(45° – θ) is ______.

  • 2 cosθ

  • 2 sinθ

  • 1

  • 0

Exercise | Q 44 | Page 57

The value of `cot(pi/4 + theta)*cot(pi/4 - theta)` is ______.

  • – 1

  • 0

  • 1

  • Not defined

Exercise | Q 45 | Page 57

cos 2θ cos 2Φ + sin2(θ – Φ) – sin2(θ + Φ) is equal to ______.

  • sin 2(θ + Φ)

  • cos 2(θ + Φ)

  • sin 2(θ – Φ)

  • cos 2(θ – Φ)

Exercise | Q 46 | Page 57

The value of cos 12° + cos 84° + cos 156° + cos 132° is ______.

  • `1/2`

  • 1

  • `-1/2`

  • `1/8`

Exercise | Q 47 | Page 57

If tan A = `1/2`, tan B = `1/3`, then tan (2A + B) is equal to ______.

  • 1

  • 2

  • 3

  • 4

Exercise | Q 48 | Page 57

The value of `sin  pi/10  sin  (13pi)/10` is ______.

  • `1/2`

  • `-1/2`

  • `-1/4`

  • 1

Exercise | Q 49 | Page 57

The value of sin 50° – sin 70° + sin 10° is equal to ______.

  • 1

  • 0

  • `1/2`

  • 2

Exercise | Q 50 | Page 57

If sin θ + cos θ = 1, then the value of sin 2θ is equal to ______.

  • 1

  • `1/2`

  • 0

  • –1

Exercise | Q 51 | Page 58

If α + β = `pi/4`, then the value of (1 + tan α)(1 + tan β) is ______.

  • 1

  • 2

  • – 2

  • Not defined

Exercise | Q 52 | Page 58

If sin θ = `(-4)/5` and θ lies in third quadrant then the value of `cos  theta/2` is ______.

  • `1/5`

  • `-1/sqrt(10)`

  • `-1/sqrt(5)`

  • `1/sqrt(10)`

Exercise | Q 53 | Page 58

Number of solutions of the equation tan x + sec x = 2 cosx lying in the interval [0, 2π] is ______.

  • 0

  • 1

  • 2

  • 3

Exercise | Q 54 | Page 58

The value of `sin  pi/18 + sin  pi/9 + sin  (2pi)/9 + sin  (5pi)/18` is given by ______.

  • `sin  (7pi)/18 + sin  (4pi)/9`

  • 1

  • `cos  pi/6 + cos  (3pi)/7`

  • `cos  pi/9 + sin  pi/9`

Exercise | Q 55 | Page 58

If A lies in the second quadrant and 3 tan A + 4 = 0, then the value of 2 cotA – 5 cos A + sin A is equal to ______.

  • `(-53)/10`

  • `23/10`

  • `37/10`

  • `7/10`

Exercise | Q 56 | Page 58

The value of cos2 48° – sin2 12° is ______.

  • `(sqrt(5) + 1)/8`

  • `(sqrt(5) - 1)/8`

  • `(sqrt(5) + 1)/5`

  • `(sqrt(5) + 1)/(2sqrt(2)`

Exercise | Q 57 | Page 59

If tan α = `1/7`, tan β = `1/3`, then cos 2α is equal to ______.

  • sin 2β

  • sin 4β

  • sin 3β

  • cos 2β

Exercise | Q 58 | Page 59

If tan θ = `a/b`, then b cos 2θ + a sin 2θ is equal to ______.

  • a

  • b

  • `a/b`

  • None

Exercise | Q 59 | Page 59

If for real values of x, cos θ = `x + 1/x`, then ______.

  • θ is an acute angle

  • θ is right angle

  • θ is an obtuse angle

  • No value of θ is possible

Fill in the blanks 60 to 67:

Exercise | Q 60 | Page 59

The value of `(sin 50^circ)/(sin 130^circ)` is ______.

Exercise | Q 61 | Page 59

If k = `sin(pi/18) sin((5pi)/18) sin((7pi)/18)`, then the numerical value of k is ______.

Exercise | Q 62 | Page 59

If tan A = `(1 - cos "B")/sin"B"`, then tan 2A = ______.

Exercise | Q 63.(i) | Page 59

If sin x + cos x = a, then sin6x + cos6x = ______.

Exercise | Q 63.(ii) | Page 59

If sin x + cos x = a, then |sin x – cos x| = ______.

Exercise | Q 64 | Page 59

In a triangle ABC with ∠C = 90° the equation whose roots are tan A and tan B is ______.

Exercise | Q 65 | Page 59

3(sin x – cos x)4 + 6(sin x + cos x)2 + 4(sin6x + cos6x) = ______.

Exercise | Q 66 | Page 59

Given x > 0, the values of f(x) = `-3cos sqrt(3 + x + x^2)` lie in the interval ______.

Exercise | Q 67 | Page 60

The maximum distance of a point on the graph of the function y = `sqrt(3)` sin x + cos x from x-axis is ______.

State whether the following statement is True or False: 68 to 75

Exercise | Q 68 | Page 60

If tan A = `(1 - cos B)/sinB`, then tan 2A = tan B

  • True

  • False

Exercise | Q 69 | Page 60

The equality sin A + sin 2A + sin 3A = 3 holds for some real value of A.

  • True

  • False

Exercise | Q 70 | Page 60

Sin 10° is greater than cos 10°

  • True

  • False

Exercise | Q 71 | Page 60

`cos  (2pi)/15 cos  (4pi)/15 cos  (8pi)/15 cos  (16pi)/15 = 1/16`

  • True

  • False

Exercise | Q 72 | Page 60

One value of θ which satisfies the equation sin4θ – 2sin2θ – 1 lies between 0 and 2π.

  • True

  • False

Exercise | Q 73 | Page 60

If cosec x = 1 + cot x then x = 2nπ, 2nπ + `pi/2`.

  • True

  • False

Exercise | Q 74 | Page 60

If tan θ + tan 2θ + `sqrt(3)` tan θ tan 2θ = `sqrt(3)`, then θ = `("n"pi)/3 + pi/9` 

  • True

  • False

Exercise | Q 75 | Page 60

If tan (π cosθ) = cot (π sinθ), then `cos(theta - pi/4) = +- 1/(2sqrt(2))`.

  • True

  • False

In the following match each item given under the column C1 to its correct answer given under the column C2 :

Exercise | Q 76 | Page 60
Column A Column B
(a) sin(x + y) sin(x – y) (i) cos2x – sin2y
(b) cos (x + y) cos (x – y) (ii) `(1 - tan theta)/(1 + tan theta)`
(c) `cot(pi/4 + theta)` (iii) `(1 + tan theta)/(1 - tan theta)`
(d) `tan(pi/4 + theta)` (iv) sin2x – sin2y

Chapter 3: Trigonometric Functions

Solved ExamplesExercise
Mathematics Exemplar Class 11 - Shaalaa.com

NCERT solutions for Mathematics Exemplar Class 11 chapter 3 - Trigonometric Functions

NCERT solutions for Mathematics Exemplar Class 11 chapter 3 (Trigonometric Functions) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Mathematics Exemplar Class 11 solutions in a manner that help students grasp basic concepts better and faster.

Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Mathematics Exemplar Class 11 chapter 3 Trigonometric Functions are Transformation Formulae, Values of Trigonometric Functions at Multiples and Submultiples of an Angle, Sine and Cosine Formulae and Their Applications, 180 Degree Plusminus X Function, 2X Function, 3X Function, Expressing Sin (X±Y) and Cos (X±Y) in Terms of Sinx, Siny, Cosx and Cosy and Their Simple Applications, Concept of Angle, Introduction of Trigonometric Functions, Signs of Trigonometric Functions, Domain and Range of Trigonometric Functions, Trigonometric Functions of Sum and Difference of Two Angles, Trigonometric Equations, Truth of the Identity, Negative Function Or Trigonometric Functions of Negative Angles, 90 Degree Plusminus X Function, Conversion from One Measure to Another, Graphs of Trigonometric Functions.

Using NCERT Class 11 solutions Trigonometric Functions exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in NCERT Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 11 prefer NCERT Textbook Solutions to score more in exam.

Get the free view of chapter 3 Trigonometric Functions Class 11 extra questions for Mathematics Exemplar Class 11 and can use Shaalaa.com to keep it handy for your exam preparation

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×