Chapters
Chapter 2: प्रतिलोम त्रिकोणमितीय फलन
Chapter 3: आव्यूह
Chapter 4: सारणिक
Chapter 5: सांतत्य तथा अवकलनीयता
Chapter 6: अवकलज के अनुप्रयोग
Chapter 7: समाकलन
Chapter 8: समाकलनों के अनुप्रयोग
Chapter 9: अवकल समीकरण
Chapter 10: सदिश बीजगणित
Chapter 11: त्रि-विमीय ज्यामिति
Chapter 12: रैखिक प्रोग्रामन
Chapter 13: प्रायिकता
![NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 6 - अवकलज के अनुप्रयोग NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 6 - अवकलज के अनुप्रयोग - Shaalaa.com](/images/mathatics-part-1-and-2-class-12-ganit-bhaaga-1-v-2_6:4934815dfd7b4e778ba41cf1f2479e89.jpg)
Solutions for Chapter 6: अवकलज के अनुप्रयोग
Below listed, you can find solutions for Chapter 6 of CBSE NCERT for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २].
NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 6 अवकलज के अनुप्रयोग प्रश्नावली 6.1 [Pages 213 - 215]
वृत्त के क्षेत्रफल के परिवर्तन की दर इसकी त्रिज्या के सापेक्ष ज्ञात कीजिए जबकि r = 3 cm है।
वृत्त के क्षेत्रफल के परिवर्तन की दर इसकी त्रिज्या r के सापेक्ष ज्ञात कीजिए, जबकि r = 4 सेमी है।
एक घन का आयतन 8 cm3/s की दर से बढ़ रहा है। पृष्ठ का क्षेत्रफल किस दर से बढ़ रहा है जब कि इसके किनारे की लंबाई 12 cm हैं।
एक वृत्त की त्रिज्या समान रूप से 3 cm/s की दर से बढ़ रही है। ज्ञात कीजिए की वृत्त का क्षेत्रफल किस दर से बढ़ रहा है जब त्रिज्या 10 cm है।
एक परिवर्तनशील घन का किनारा 3 cm/s की दर से बढ़ रहा है। घन का आयतन किस दर से बढ़ रहा है जबकि किनारा 10 cm लंबा है?
एक स्थिर झील में एक पत्थर डाला जाता है और तरंगें वृत्तों में 5 cm/s की गति से चलती है। जब वृत्ताकार तरंग की त्रिज्या 8 cm है तो उस क्षण, घिरा हुआ क्षेत्रफल किस दर से बढ़ रहा है।
एक वृत्त की त्रिज्या 0.7 cm/s की दर से बढ़ रही है। इसकी परिधि की वृद्धि की दर क्या है जब r = 4.9 cm है?
एक आयत की लंबाई x, 5 cm/min की दर से घट रही है और चौड़ाई y, 4 cm/min की दर से बढ़ रही है। जब x = 8 cm और y = 6 cm है। तब आयत के (a) परिमाप (b) क्षेत्रफल के परिवर्तन की दर ज्ञात कीजिए।
एक गुब्बारा जो सदैव गोलाकर रहता है, एक पंप द्वारा 900 cm3 गैस प्रति सेकंड भर कर फुलाया जाता है। गुब्बारे की त्रिज्या के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 15 cm है।
एक गुब्बारा जो सदैव गोलाकार रहता है कि त्रिज्या परिवर्तनशील है। त्रिज्या के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए जब त्रिज्या 10 cm है।
एक 5 m लंबी सीढी दीवार के सहारे झुकी है। सीढ़ी का नीचे का सिरा, जमीन के अनुदिश, दीवार से दूर 2 cm/s की दर से खींचा जाता है। दीवार पर इसकी ऊँचाई किस दर से घट रही है जबकि सीढ़ी को नीचे का सिरा दीवार से 4 m दूर है?
एक कण वक्र 6y = x3 + 2 के अनुगत गति कर रहा है। वक्र पर उन बिंदुओं को ज्ञात कीजिए जबकि x निर्देशांक की तुलना में y निर्देशांक 8 गुना तीव्रता से बदल रहा है।
हवा के बुलबुले की त्रिज्या, `1/2` cm/s दर से बढ़ रही है। बुलबुले का आयतन किस दर से बढ़ रहा है जबकि त्रिज्या 1 cm है?
एक गुब्बारा, जो सदैव गोलाकार रहता है, का परिवर्तनशील व्यास `3/2` (2x + 1) है। x के सापेक्ष आयतन के परिवर्तन की दर ज्ञात कीजिए।
एक पाइप से रेत 12 cm3/s की दर से गिर रही है। गिरती रेत जमीन पर एक ऐसा शंकु बनाती है जिसकी ऊँचाई सदैव आधार की त्रिज्या का छठा भाग है। रेत से बने शंकु की ऊँचाई किस दर से बढ़ रही है जबकि ऊँचाई 4 cm है?
एक वस्तु की x इकाइयों के उत्पादन की कुल लागत C (x) (रुपये में)
C(x) = 0.007x3 – 0.003x2 + 15x + 4000
से प्राप्त होती है। सीमांत लागत ज्ञात कीजिए जबकि 17 इकाइयों का उत्पादन किया गया है।
किसी उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय R(x) रुपयों में
R(x) = 13x2 + 26x + 15
से प्रदत्त है। सीमांत आय ज्ञात कीजिए जब x = 7 है।
सही उत्तर का चयन कीजिए।
एक वृत्त की त्रिज्या r = 6 सेमी पर r के सापेक्ष क्षेत्रफल में परिवर्तन की दर है:
`10 pi`
`12 pi`
`8 pi`
`11 pi`
एक उत्पाद की x इकाइयों के विक्रय से प्राप्त कुल आय रुपयों में R(x) = 3x2 + 36x + 5 से प्रदत्त है। जब x = 15 है तो सीमांते आये है:
116
96
90
126
NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 6 अवकलज के अनुप्रयोग प्रश्नावली 6.2 [Pages 221 - 223]
सिद्ध कीजिए कि R पर f(x) = 3x + 17 से प्रदत्त फलन वर्धमान है।
सिद्ध कीजिए कि R पर f(x) = e2x से प्रदत्त फलन वर्धमान है।
सिद्ध कीजिए कि f(x) = sin x द्वारा दिया गया फलन
- `(0, pi/2)` में निरंतर वर्धमान है।
- `(pi/2, pi)` में निरंतर ह्रासमान है।
- `(0, pi)` में न तो वर्धमान है और न ह्रासमान।
अंतराल ज्ञात कीजिए जिनमें f(x) = 2x2 - 3x से प्रदत्त फलन f
(a) वर्धमान (b) ह्रासमान
अंतराल ज्ञात कीजिए जिनमें f(x) = 2x3 - 3x2 - 36x + 7 से प्रदत्त फलन f
(a) वर्धमान (b) ह्रासमान
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:
f(x) = x2 + 2x + 5
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:
f(x) = 10 - 6x - 2x2
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:
f(x) = - 2x3 - 9x2 - 12x + 1
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या ह्रासमान है:
f(x) = 6 - 9x - x2
अंतराल ज्ञात कीजिए जिनमें निम्नलिखित फलन f वर्धमान या हासमान है:
f(x) = (x + 1)3 (x - 3)3
सिद्ध कीजिए कि y = log (1 + x) - `(2"x")/(2 + "x"),` x > -1 अपने संपूर्ण प्रांत में में एक वर्धमान फलन है।
x के उन मानों को ज्ञात कीजिए जिनके लिए y = [x(x – 2)]2 एक वर्धमान फलन है।
सिद्ध कीजिए कि `[0, pi/2]` में
`"y" = (4 sin theta)/(2 + cos theta) - theta, theta` का एक वर्धमान फलन है।
सिद्ध कीजिए कि लघुगणकीय फलन `(0, infty)` में वर्धमान फलन है।
सिद्ध कीजिए कि (-1,1) में f(x) = x2 - x + 1 से प्रदत्त फलन न तो वर्धमान है और न ही ह्रासमान है।
निम्नलिखित में कौन से फलन `(0, pi/2)` में ह्रासमान है?
- cos x
- cos 2x
- cos 3x
- tan x
निम्नलिखित अंतरालों में से किस अंतराल में f(x) = x100 + sin x - 1 द्वारा प्रदत्त फलन f निरंतर ह्रासमान है?
(0, 1)
`(pi/2, pi)`
`(0, pi/2)`
इनमें से कोई नहीं।
a का वह न्यूनतम मान ज्ञात कीजिए जिसके लिए अंतराल [1, 2] में f(x) = x2 + ax + 1 से प्रदत्त फलन वर्धमान है।
मान लीजिए [-1, 1] से असंयुक्त एक अंतराल I हो तो सिद्ध कीजिए कि I में f(x) `= "x" + 1/"x"` से प्रदत्त फलन f, वर्धमान है।
सिद्ध कीजिए कि फलन f(x) = log sin x, `(0, pi/2)` में वर्धमान और `(pi/2, pi)` में ह्रासमान है।
सिद्ध कीजिए कि फलन f(x) = log |cos x| `(0, pi/2)` में वर्धमान और `((3pi)/2, 2pi)` में ह्रासमान है।
सिद्ध कीजिए कि R में दिया गया फलन f(x) = x3 - 3x2 + 3x - 100 वर्धमान है।
निम्नलिखित में से किस अंतराल में y = x2 e-x वर्धमान है?
`(- infty, infty)`
(-2, 0)
`(2, infty)`
(0, 2)
NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 6 अवकलज के अनुप्रयोग प्रश्नावली 6.3 [Pages 227 - 229]
वक्र y = 3x4 - 4x के x = 4 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र `"y" = ("x" - 1)/("x" - 2), "x" ne 2` के x = 10 पर स्पर्श रेखा की प्रवणता ज्ञात कीजिए।
वक्र y = x3 - x + 1 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 2 है।
वक्र y = x3 - 3x + 2 की स्पर्श रेखा की प्रवणता उस बिंदु पर ज्ञात कीजिए जिसका x-निर्देशांक 3 है।
वक्र x `= "a" cos^3 theta, "y = a" sin^3 theta` के `theta = pi/4` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र x `= 1 - "a" sin theta, "y = b" cos^2 theta "के" theta = pi/2` पर अभिलंब की प्रवणता ज्ञात कीजिए।
वक्र y = x3 - 3x2 - 9x + 7 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखायें x-अक्ष के समांतर हैं।
वक्र y = (x - 2)2 पर एक बिंदु ज्ञात कीजिए जिस पर स्पर्श रेखा बिंदुओं (2, 0) और (4, 4) को मिलाने वाली रेखा के समांतर है।
वक्र y = x3 - 11x + 5 पर उस बिंदु को ज्ञात कीजिए जिस पर स्पर्श रेखा y = x - 11 है।
प्रवणता -1 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 1), "x" ne -1` को स्पर्श करती है।
प्रवणता 2 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x" - 3), "x" ne 3` को स्पर्श करती है।
प्रवणता 0 वाली सभी रेखाओं का समीकरण ज्ञात कीजिए जो वक्र y `= 1/("x"^2 - 2"x" + 3)` को स्पर्श करती है।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ x-अक्ष के समांतर हैं।
वक्र `"x"^2/9 + "y"^2/16 = 1` पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ y-अक्ष के समांतर हैं।
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (0, 5) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x4 - 6x3 + 13x2 - 10x + 5 के (1, 3) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x3 के (1, 1) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
y = x2 के (0, 0) पर
दिए वक्र पर निर्दिष्ट बिंदुओं पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए:
x = cos t, y = sin t के t `= pi/4` पर
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 2x - y + 9 = 0 के समांतर है।
वक्र y = x2 - 2x + 7 की स्पर्श रेखा का समीकरण ज्ञात कीजिए, जो रेखा 5y - 15x = 13 पर लंब है।
सिद्ध कीजिए कि वक्र y = 7x3 + 11 के उन बिंदुओं पर स्पर्श रेखाएँ समांतर हैं जहाँ x = 2 तथा x = - 2 है।
वक्र y = x3 पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखा की प्रवणता बिंदु के y-निर्देशांक के बराबर है।
वक्र y = 4x3 - 2x5, पर उन बिंदुओं को ज्ञात कीजिए जिन पर स्पर्श रेखाएँ मूलबिंदु से होकर जाती हैं।
वक्र x2 + y2 - 2x - 3 = 0 के उन बिंदुओं पर स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जहाँ पर वे x-अक्ष के समांतर हैं।
वक्र ay2 = x3 के बिंदु (am2, am3) पर अभिलंब का समीकरण ज्ञात कीजिए।
वक्र y = x3 + 2x + 6 के उन अभिलंबो के समीकरण ज्ञात कीजिए जो रेखा x + 14y + 4 = 0 के समान्तर हैं।
परवलय y2 = 4ax के बिंदु (at2, 2at) पर स्पर्श रेखा और अभिलंब के समीकरण ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र x = y2 और xy = k एक-दूसरे को समकोण पर काटती हैं, यदि 8k2 = 1 है।
अतिपरवलय `"x"^2/"a"^2 - "y"^2/"b"^2 = 1` के बिंदु (x0, y0) पर स्पर्श रेखा तथा अभिलंब के समीकरण ज्ञात कीजिए।
वक्र y = `sqrt(3"x" - 2)` की उन स्पर्श रेखाओं के समीकरण ज्ञात कीजिए जो रेखा 4x - 2y + 5 = 0 के समांतर है।
सही उत्तर का चुनाव कीजिए।
वक्र y = 2x2 + 3sin x के x = 0 पर अभिलंब की प्रवणता है:
3
`1/3`
-3
`-1/3`
किस बिंदु पर y = x + 1, वक्र y2 = 4x की स्पर्श रेखा है?
(1, 2)
(2, 1)
(1, - 2)
(-1, 2)
NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 6 अवकलज के अनुप्रयोग प्रश्नावली 6.4 [Pages 232 - 233]
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`sqrt25.3`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`sqrt49.5`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`sqrt0.6`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(0.009)^(1/3)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(0.999)^(1/10)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(15)^(1/4)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(26)^(1/3)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(255)^(1/4)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(82)^(1/4)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(401)^(1/2)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(0.0037)^(1/2)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(26.57)^(1/3)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(81.5)^(1/4)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(3.968)^(3/2)`
अवकल का प्रयोग करके निम्नलिखित में से सन्निकट मान दशमलव के तीन स्थानों तक ज्ञात कीजिए:
`(32.15)^(1/5)`
f(2.01) का सन्निकट मान ज्ञात कीजिए जबकि f(x) = 4x2 + 5x + 2 है।
f(5.001) का सन्निकट मान ज्ञात कीजिए जहाँ f(x) = x3 - 7x2 + 15 है।
x मी भुजा वाले घन की भुजा में 1% की वृद्धि होने के कारण घन के आयतन में होने वाला सन्निकट परिवर्तन ज्ञात कीजिए।
x मी भुजा वाले घन की भुजा में 1% ह्रास होने के कारण घन के पृष्ठ क्षेत्रफल में होने वाला सन्निकट परिवर्तन ज्ञात कीजिए।
एक गोले की त्रिज्या 7 मी मापी जाती है जिसमें 0.02 मी की त्रुटि है। इसके आयतन के परिकलन में सन्निकट त्रुटि ज्ञात कीजिए।
एक गोले की त्रिज्या 9 मी मापी जाती है जिसमें 0.03 मी की त्रुटि है। इसके पृष्ठ क्षेत्रफल के परिकलन में सन्निकट त्रुटि ज्ञात कीजिए।
यदि f(x) = 3x2 + 15x + 5 हो तो f (3.02) का सन्निकट मान है।
47.66
57.66
67.66
77.66
भुजा में 3% वृद्धि के कारण भुजा x के घन के आयतन में सन्निकट परिवर्तन है।
0.06 x3 मी3
0.6 x3 मी3
0.09 x3 मी3
0.9 x3 मी3
NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 6 अवकलज के अनुप्रयोग प्रश्नावली 6.5 [Pages 249 - 251]
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = (2x - 1)2 + 3
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = 9x2 + 12x + 2
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = -(x - 1)2 + 10
निम्नलिखित दिए गए फलन के उच्चतम या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
g(x) = x3 + 1
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = |x + 2| - 1
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
g(x) = - |x + 1| + 3
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
h(x) = sin (2x) + 5
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
f(x) = |sin 4x + 3|
निम्नलिखित दिए गए फलन के उच्चतम मान या निम्नतम मान, यदि कोई हो तो ज्ञात कीजिए:
h(x) = x + 1, x ∈ (-1,1)
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
f(x) = x2
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
g(x) = x3 - 3x
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
h(x) = sin x + cos x, 0 < x < `pi/2`
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
f(x) = sin x - cos x, 0 < x < 2`pi`
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
f(x) = x3 - 6x2 + 9x + 15
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
g(x) = `"x"/2 + 2/"x", "x" > 0`
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
g(x) `= 1/("x"^2 + 2)`
निम्नलिखित फलन के स्थानीय उच्चतम या निम्नतम, यदि कोई हो तो ज्ञात कीजिए तथा स्थानीय उच्चतम या स्थानीय निम्नतम माने, जैसी स्थिति हो, भी ज्ञात कीजिए।
f(x) `= "x" sqrt(1 - "x"), 0 < "x" < 1`
सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:
f(x) = ex
सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:
g(x) = log x
सिद्ध कीजिए कि निम्नलिखित फलन को उच्चतम या निम्नतम मान नहीं है:
h(x) = x3 + x2 + x + 1
प्रदत्त अंतरलो में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।
f(x) = x3, x `in` [-2, 2]
प्रदत्त अंतरलो में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।
f(x) = sin x + cos x, x `in [0, pi]`
प्रदत्त अंतरलो में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।
f(x) = 4x `- 1/2 "x"^2, "x" in [-2, 9/2]`
प्रदत्त अंतरलो में निम्नलिखित फलन के निरपेक्ष उच्चतम मान और निरपेक्ष निम्नतम मान ज्ञात कीजिए।
f(x) = (x - 1)2 + 3, x `in` [-3, 1]
यदि लाभ फलन p(x) = 41 - 72x - 18x2 से प्रदत्त है तो किसी कंपनी द्वारा अर्जित उच्चतम लाभ ज्ञात कीजिए।
अंतराल [0, 3] पर 3x4 - 8x3 + 12x2 - 48x + 25 के उच्चतम मान और निम्नतम मान ज्ञात कीजिए।
अंतराल [0, 2π] के किन बिंदुओं पर फलन sin 2 x अपना उच्चतम मान प्राप्त करता है।
फलन sin x + cos x का उच्चतम मान क्या है?
अंतराल [1, 3] में 2x3 - 24x + 107 का महत्तम मान ज्ञात कीजिए। इसी फलन का अंतराल [-3, -1] में भी महत्तम मान ज्ञात कीजिए।
यदि दिया है कि अंतराल [0,2] में x = 1 पर फलन x4 - 62x2 + ax + 9 उच्चतम मान प्राप्त करता है तो a का मान ज्ञात कीजिए।
[0, 2π] पर x + sin 2x का उच्चतम और निम्नतम मान ज्ञात कीजिए।
ऐसी दो संख्याएँ ज्ञात कीजिए जिनका योग 24 है और जिनका गुणनफल उच्चतम हो।
ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए ताकि x + y = 60 और xy3 उच्चतम हो।
ऐसी दो धन संख्याएँ x और y ज्ञात कीजिए जिनका योग 35 हो और गुणनफल x2y5 उच्चतम हो।
ऐसी दो धन संख्याएँ ज्ञात कीजिए जिनका योग 16 हो और जिनके घनों का योग निम्नतम हो।
18 सेमी भुजा के टिन के किसी वर्गाकार टुकड़े से प्रत्येक कोने पर एक वर्ग काटकर तथा इस प्रकार बने टिन के फलकों को मोड़कर ढक्कन रहित एक संदूक बनाना है। काटे जाने वाले वर्ग की भुजा कितनी होगी जिससे संदूक का आयतन उच्चतम होगा?
45 cm × 24 cm की टिन की आयताकार चादर के चारों कोनों से समान भुजा का एक वर्गाकार निकालने के पश्चात् खुला हुआ एक संदूक बनाया जाता है। वर्गों की भुजा की माप ज्ञात कीजिये जिसके काटने पर बने संदूक का आयतन महत्तम होगा।
सिद्ध कीजिए कि एक दिए वृत्त के अंर्तगत सभी आयतों में वर्ग का क्षेत्रफल उच्चतम होता है।
सिद्ध कीजिए कि प्रदत्त पृष्ठ एवं महत्तम आयतन के बेलन की ऊँचाई आधार के व्यास के बराबर होती है।
100 सेमी3 आयतन वाले डिब्बे सभी बंद बेलनाकार (लंब वृत्तीय) डिब्बों में से न्यूनतम पृष्ठ क्षेत्रफल वाले डिब्बे की विमाएँ ज्ञात कीजिए।
एक 28 cm लंबे तार को दो टुकड़ों में विभक्त किया जाना है। एक टुकड़े से वर्ग तथा दूसरे से वृत्त बनाया जाना है। दोनों टुकड़ों की लंबाई कितनी होनी चाहिए जिससे वर्ग एवं वृत्त का सम्मिलित क्षेत्रफल न्यूनतम हो?
सिद्ध कीजिए कि R त्रिज्या के गोले के अन्तर्गत विशालतम शंकु का आयतन गोले के आयतन का `8/27` होता है।
सिद्ध कीजिए कि न्यूनतम पृष्ठ पर दिए आयतन के लंब वृत्तीय शंकु की ऊँचाई, आधार की त्रिज्या की `sqrt2` गुनी होती है।
सिद्ध कीजिए कि दी हुई तिर्यक ऊँचाई और महत्तम आयतन वाले शंकु का अर्थ शीर्ष कोण tan-1 `sqrt2` होता है।
सिद्ध कीजिए कि दिए हुए पृष्ठ और महत्त्म आयतन वाले लंब वृत्तीय शंकु का अर्ध शीर्ष कोण `sin^-1 (1/3)` होता है।
सही उत्तर का चुनाव कीजिए।
वक्र x2 = 2y पर (0, 5) से न्यूनतम दूरी पर स्थित बिंदु है:
`(2sqrt2,4)`
`(2sqrt2,0)`
(0, 0)
(2, 2)
x के सभी वास्तविक मानों के लिए `(1 - "x" + "x"^2)/(1 + "x" = "x"^2)` का न्यूनतम मान है:
0
1
3
`1/3`
`"y" = ["x" ("x" - 1) + 1]^(1/3), 0 le "x" le 1,` का उच्चतम मान है:
`(1/3)^(1/3)`
`1/2`
1
0
NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 6 अवकलज के अनुप्रयोग अध्याय 6 पर विविध प्रश्नावली [Pages 259 - 261]
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
`(17/81)^(1/4)`
अवकलज का प्रयोग करके निम्नलिखित में से सन्निकट मान ज्ञात कीजिए।
(33)-1/5
सिद्ध कीजिए कि f (x) = `(log x)/x` द्वारा प्रदत्त फलन x = e पर उच्चतम है।
किसी निश्चित आधार b के एक समद्विबाहु त्रिभुज की समान भुजाएँ 3 cm/s की दर से घट रही हैं। उस समय जब त्रिभुज की समान भुजाएँ आधार के बराबर हैं, उसका क्षेत्रफल कितनी तेजी से घट रहा है?
वक्र x2 = 4y के बिन्दु (1, 2) पर अभिलम्ब का समीकरण ज्ञात कीजिए।
सिद्ध कीजिए कि वक्र x = a cos θ + a θ sin θ, y = a sin θ – a θ cos θ के किसी बिन्दु पर अभिलंब मूल बिन्दु से अचर दूरी पर है।
अंतराल ज्ञात कीजिए जिन पर:
f(x) = `(4 sin x - 2x - x cos x)/(2 + cos x)` से प्रदत्त फलन (i) वर्धमान, (ii) ह्रासमान है।
अंतराल ज्ञात कीजिए जिन पर f(x) = `x^3 + 1/x^3, x ne 0` से प्रदत्त फलन (i) वर्धमान, (ii) ह्रासमान है।
दीर्घवृत्त `x^2/"a"^2 + "y"^2/"b"^2 = 1` के अंतर्गत उस समद्विबाहु त्रिभुज का महत्तम क्षेत्रफल ज्ञात कीजिए जिसका शीर्ष दीर्घ अक्ष का एक सिरा है।
आयताकार आधार व आयताकार दीवारों की 2 m गहरी और 8 m3 आयतन की एक बिना ढक्कन की टंकी का निर्माण करना है। यदि टंकी के निर्माण में आधार के लिए Rs. 70/m2 और दीवारों पर Rs. 45/m2 व्यय आता है तो निम्नतम खर्च से बनी टंकी की लागत क्या है?
एक वृत्त और एक वर्ग के परिमापों का योग k है, जहाँ k एक अचर है। सिद्ध कीजिए कि उनके क्षेत्रफलों का योग निम्नतम है, जब वर्ग की भुजा वृत्त की त्रिज्या की दुगुनी है।
किसी आयत के ऊपर बने अर्धवृत्त के आकार वाली खिड़की है। खिड़की का सम्पूर्ण परिमाप 10 m है। पूर्णतया खुली खिड़की से अधिकतम प्रकाश आने के लिए खिड़की की विमाएँ ज्ञात कीजिए।
त्रिभुज की भुजाओं से a और b दूरी पर त्रिभुज के कर्ण पर स्थित एक बिन्दु है। सिद्ध कीजिए कि कर्ण की न्यूनतम लंबाई (a2/3 + b2/3)3/2 है।
उन बिन्दुओं को ज्ञात कीजिए जिन पर f(x) = (x – 2)4 (x + 1)4 द्वारा प्रदत्त फलन f का
- स्थानीय उच्चतम बिन्दु है,
- स्थानीय निम्नतम बिन्दु है,
- नत परिवर्तन बिन्दु है।
f (x) = cos2 x + sin x, x ϵ [0, π] द्वारा प्रदत्त फलन f का निरपेक्ष उच्चतम और निम्नतम मान ज्ञात कीजिए।
सिद्ध कीजिए कि एक r त्रिज्या के गोले के अन्तर्गत उच्चतम आयतन के लम्ब वृत्तीय शंकु की ऊँचाई `(4"r")/3` है।
मान लीजिए [a, b] पर परिभाषित एक फलन f है। इस प्रकार कि सभी x ∈ (a, b) के लिए f' (x) > 0 है तो सिद्ध कीजिए कि (a, b) पर f एक वर्धमान फलन है।
सिद्ध कीजिए कि एक R त्रिज्या के गोले के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई `"2R"/sqrt3` है। अधिकतम आयतन भी ज्ञात कीजिए।
सिद्ध कीजिए कि अर्द्धशीर्ष कोण और ऊँचाई h के लम्ब वृत्तीय शंकु के अन्तर्गत अधिकतम आयतन के बेलन की ऊँचाई शंकु के ऊँचाई की एक-तिहाई है और बेलन का अधिकतम आयतन `4/27` = πh3 tan2 α है।
सही उत्तर चुनिए।
एक 10 m त्रिज्या की बेलनाकार टंकी में 314 m3/h की दर से गेहूँ भरा जाता है। भरे गए गेहूँ की गहराई की वृद्धि दर है:
1 m/h
0.1 m/h
1.1 m/h
0.5 m/h
वक्र x = t2 + 3t – 8, y = 2t2 – 2t -5 के बिन्दु (2, -1) पर स्पर्श रेखा की प्रवणता है-
`22/7`
`6/7`
`7/6`
`(-6)/7`
रेखा y = mx + 1, वक्र y2 = 4x की एक स्पर्श रेखा है यदि m का मान है-
1
2
3
`1/2`
वक्र 2y + x2 = 3 के बिन्दु (1, 1) पर अभिलम्ब का समीकरण है:
x + y = 0
x - y = 0
x + y + 1= 0
x - y = 1
वक्र x2 = 4y का बिन्दु (1, 2) से होकर जाने वाला अभिलम्ब है-
x + y = 3
x – y = 3
x + y = 1
x – y = 1
वक्र 9y2 = x3 पर वे बिन्दु जहाँ पर वक्र का अभिलम्ब अक्षों से समान अन्तःखण्ड बनाता है-
`(4 +- 8/3)`
`(4, - 8/3)`
`(4, +- 3/8)`
`(+- 4, 3/8)`
Solutions for Chapter 6: अवकलज के अनुप्रयोग
![NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 6 - अवकलज के अनुप्रयोग NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 6 - अवकलज के अनुप्रयोग - Shaalaa.com](/images/mathatics-part-1-and-2-class-12-ganit-bhaaga-1-v-2_6:4934815dfd7b4e778ba41cf1f2479e89.jpg)
NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 6 - अवकलज के अनुप्रयोग
Shaalaa.com has the CBSE Mathematics Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT solutions for Mathematics Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] CBSE 6 (अवकलज के अनुप्रयोग) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 6 अवकलज के अनुप्रयोग are उच्चतम और निम्नतम, एक संवृत्त अंतराल में किसी फलन का उच्चतम और निम्नतम मान, सन्निकटन, अवकलज के अनुप्रयोग, राशियों के परिवर्तन की दर, वर्धमान और हासमान फलन, स्पर्श रेखाएँ और अभिलंब.
Using NCERT Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] solutions अवकलज के अनुप्रयोग exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] students prefer NCERT Textbook Solutions to score more in exams.
Get the free view of Chapter 6, अवकलज के अनुप्रयोग Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] additional questions for Mathematics Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.