NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 13 - प्रायिकता [Latest edition]

Advertisement Remove all ads

Chapters

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 13 - प्रायिकता - Shaalaa.com
Advertisement Remove all ads
Advertisement Remove all ads

Chapter 13: प्रायिकता

प्रश्नावली 13.1प्रश्नावली 13.2प्रश्नावली 13.3प्रश्नावली 13.4प्रश्नावली 13.5अध्याय 13 पर विविध पश्नावली
प्रश्नावली 13.1 [Pages 554 - 556]

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 13 प्रायिकता प्रश्नावली 13.1 [Pages 554 - 556]

प्रश्नावली 13.1 | Q 1. | Page 554

यदि E और F इस प्रकार की घटनाएँ हैं कि P(E) = 0.6, P(F) = 0.3 और P(E ∩ F) = 0.2, तो P(E|F) और P(F|E) ज्ञात कीजिए।

प्रश्नावली 13.1 | Q 2. | Page 554

P(A|B) ज्ञात कीजिए, यदि P(B) = 0.5 और P(A ∩ B) = 0.32

प्रश्नावली 13.1 | Q 3. (i) | Page 554

यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए |

P(A ∩ B)

प्रश्नावली 13.1 | Q 3. (ii) | Page 554

यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए |

P(A|B)

प्रश्नावली 13.1 | Q 3. (iii) | Page 554

यदि P(A) = 0.8, P(B) = 0.5 और P(B|A) = 0.4 ज्ञात कीजिए |

P(A ∪ B)

प्रश्नावली 13.1 | Q 4. | Page 554

P(A ∪ B) ज्ञात कीजिए यदि 2P(A) = P(B) = `5/13` और P(A|B) = `2/5`

प्रश्नावली 13.1 | Q 5. (i) | Page 555

यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |

P(A ∩ B)

प्रश्नावली 13.1 | Q 5. (ii) | Page 555

यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |

P(A|B)

प्रश्नावली 13.1 | Q 5. (iii) | Page 555

यदि P(A) = `6/11`, P(B) = `5/11` और P(A ∪ B) = `7/11` तो ज्ञात कीजिए |

P(B|A)

प्रश्नावली 13.1 | Q 6. (i) | Page 555

निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।

एक सिक्के को तीन बार उछाला गया है:

E : तीसरी उछाल पर चित्त, F : पहली दोनों उछालों पर चित्त

प्रश्नावली 13.1 | Q 6. (iii) | Page 555

निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए।

एक सिक्के को तीन बार उछाला गया है:

E : न्यूनतम दो चित्त, F : अधिकतम एक चित्त

प्रश्नावली 13.1 | Q 6. (iii) | Page 555

निम्नलिखित प्रश्न में P(E|F) ज्ञात कीजिए | 

एक सिक्के को तीन बार उछाला गया है:

E : अधिकतम दो पट F : न्यूनतम दो पट

प्रश्नावली 13.1 | Q 7. (i) | Page 555

दो सिक्कों को एक बार उछाला गया है-

E : एक सिक्के पर पट प्रकट होता है, F : एक सिक्के पर चित प्रकट होता है

प्रश्नावली 13.1 | Q 7. (ii) | Page 555

दो सिक्कों को एक बार उछाला गया है:

E : कोई पट प्रकट नहीं होता है, F : कोई चित प्रकट नहीं होता है।

प्रश्नावली 13.1 | Q 8. | Page 555

एक पासे को तीन बार उछाला गया है:

E : तीसरी उछाल पर संख्या 4 प्रकट होना

F : पहली दो उछालों पर क्रमशः 6 तथा 5 प्रकट होना।

प्रश्नावली 13.1 | Q 9. | Page 555

एक पारिवारिक चित्र में माता, पिता व पुत्र यादृच्छया खड़े हैं:

E : पुत्र एक सिरे पर खड़ा है, F : पिता मध्य में खड़े हैं

प्रश्नावली 13.1 | Q 10. (a) | Page 555

एक काले और एक लाल पासे को उछाला गया है:

पासों पर प्राप्त संख्याओं का योग 9 होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हो कि काले पासे पर 5 प्रकट हुआ है।

प्रश्नावली 13.1 | Q 10. (b) | Page 555

एक काले और एक लाल पासे को उछाला गया है:

पासों पर प्राप्त संख्याओं का योग 8 होने की सप्रतिबंध प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हो कि लाल पासे पर 4 से कम है।

प्रश्नावली 13.1 | Q 11. (i) | Page 555

एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:

P(E | F) और P(F | E)

प्रश्नावली 13.1 | Q 11. (ii) | Page 555

एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:

P(E | G) और P(G | E)

प्रश्नावली 13.1 | Q 11. (iii) | Page 555

एक न्याय्य पासे को उछाला गया है। घटनाओं E = {1, 3, 5}, F = {2, 3}, और G = {2, 3, 4, 5} के लिए निम्नलिखित ज्ञात कीजिए:

P(E ∪ F|G) और P(E ∩ F|G)

प्रश्नावली 13.1 | Q 12. | Page 555

मान लें कि जन्म लेने वाले बच्चे को लड़का या लड़की होना समसंभाव्य है। यदि किसी परिवार में दो बच्चे हैं, तो दोनों बच्चों के लड़की होने की सप्रतिबंध प्रायिकता क्या है, यदि यह दिया गया है कि

  1. सबसे छोटा बच्चा लड़की है
  2. न्यूनतम एक बच्चा लड़की है।
प्रश्नावली 13.1 | Q 13. | Page 555

एक प्रशिक्षक के पास 300 सत्य/असत्य प्रकार के आसान प्रश्न 200 सत्य/असत्य प्रकार के कठिन प्रश्न, 500 बहु-विकल्पीय प्रकार के आसान प्रश्न और 400 बहु-विकल्पीय प्रकार के कठिन प्रश्नों का संग्रह है। यदि प्रश्नों के संग्रह से एक प्रश्न यादृच्छया चुना जाता है, तो एक आसान प्रश्न की बहु-विकल्पीय होने की प्रायिकता क्या होगी?

प्रश्नावली 13.1 | Q 14. | Page 556

यह दिया गया है कि दो पासों को फेंकने पर प्राप्त संख्याएँ भिन्न-भिन्न हैं। दोनों संख्याओं का योग 4 होने की प्रायिकता ज्ञात कीजिए।

प्रश्नावली 13.1 | Q 15. | Page 556

एक पासे को फेंकने के परीक्षण पर विचार कीजिए। यदि पासे पर प्रकट संख्या 3 का गुणज है तो पासे को पुनः फेंकें और यदि कोई अन्य संख्या प्रकट हो तो एक सिक्के को उछालें। घटना 'न्यूनतम एक पासे पर संख्या 3 प्रकट होना’ दिया गया है तो घटना ‘सिक्के पर पट प्रकट होने' की सप्रतिबंध प्रायिकता ज्ञात कीजिए।

निम्नलिखित प्रश्नों में से प्रत्येक में सही उत्तर चुनें।

प्रश्नावली 13.1 | Q 16. | Page 556

यदि P(A) =`1/2`, P(B) = 0 तब P(A|B) है:

  • 0

  • `1/2`

  • परिभाषित नहीं

  • 1

प्रश्नावली 13.1 | Q 17. | Page 556

यदि  A और B दो घटनाएँ इस प्रकार हैं कि P(A|B) = P(B|A) ≠ 0 तब 

  • A ⊂ B

  • A = B

  • A ∩ B = Φ

  • P(A) = P(B)

प्रश्नावली 13.2 [Pages 562 - 564]

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 13 प्रायिकता प्रश्नावली 13.2 [Pages 562 - 564]

प्रश्नावली 13.2 | Q 1. | Page 562

यदि P(A) = `3/5`, P(B) = `1/5` और A तथा B स्वतंत्र घटनाएँ हैं तो P(A ∩ B) ज्ञात कीजिए।

प्रश्नावली 13.2 | Q 2. | Page 562

52 पत्तों की एक गड्डी में से यादृच्छया बिना प्रतिस्थापित किए दो पत्ते निकाले गए। दोनों पत्तों के काले रंग का होने की प्रायिकता ज्ञात कीजिए।

प्रश्नावली 13.2 | Q 3. | Page 562

संतरों के एक डिब्बे का निरीक्षण उसमें से तीन संतरों को यादृच्छया बिना प्रतिस्थापित किए हुए निकाल कर किया जाता है। यदि तीनों निकाले गए संतरें अच्छे हों तो डिब्बे को बिक्री के लिए स्वीकृत किया जाता है अन्यथा अस्वीकृत कर देते हैं। एक डिब्बा जिसमें 15 संतरें हैं जिनमें से 12 अच्छे व ३ खराब संतरें हैं, के बिक्री के लिए स्वीकृत होने की प्रायिकता ज्ञात कीजिए।

प्रश्नावली 13.2 | Q 4. | Page 563

एक न्याय्य सिक्का और एक अभिनत पाँसे को उछाला गया। मान लें A घटना ‘सिक्के पर चित प्रकट होता है' और B घटना 'पाँसे पर संख्या 3 प्रकट होती है’ को निरूपित करते हैं। निरीक्षण कीजिए कि घटनाएँ A और B स्वतंत्र हैं या नहीं?

प्रश्नावली 13.2 | Q 5. | Page 563

एक पाँसे पर 1, 2, 3 लाल रंग से और 4, 5, 6 हरे रंग से लिखे गए हैं। इस पाँसे को उछाला गया। मान लें A घटना 'संख्या सम है’ और B घटना ‘संख्या लाल रंग से लिखी गई है’, को निरूपित करते हैं। क्या A और B स्वतंत्र हैं?

प्रश्नावली 13.2 | Q 6. | Page 563

मान लें E तथा F दो घटनाएँ इस प्रकार हैं कि P(E) = `3/5`, P(F) = `3/10` और P(E ∩ F) =`1/5` तब क्या E तथा F स्वतंत्र हैं?

प्रश्नावली 13.2 | Q 7. | Page 563

A और B ऐसी घटनाएँ दी गई हैं जहाँ P(A) = `1/2`, P(A ∪ B) = `3/5` तथा P(B) = p, तो p का मान ज्ञात कीजिए यदि

  1. घटनाएँ परस्पर अपवर्जी हैं।
  2. घटनाएँ स्वतंत्र हैं।
प्रश्नावली 13.2 | Q 8. | Page 563

मान लें A और B स्वतंत्र घटनाएँ है तथा P(A) = 0.3 और P(B) = 0.4 तब

  1. P (A ∩ B)
  2. P(A ∪ B)
  3. P(A | B)
  4. P(B | A) ज्ञात कीजिए।
प्रश्नावली 13.2 | Q 9. | Page 563

दी गई घटनाएँ A और B ऐसी हैं, जहाँ P(A) =`1/4`, P(B) = `1/2` और P(A ∩ B) = `1/8` तब P(A - नहीं और B - नहीं) ज्ञात कीजिए।

प्रश्नावली 13.2 | Q 10. | Page 563

मान लें A तथा B स्वतंत्र घटनाएँ हैं और P(A) = `1/2` तथा P(B) = `7/12` और P(A - नहीं और B - नहीं) = `1/4`, क्या A और B स्वतंत्र घटनाएँ हैं?

प्रश्नावली 13.2 | Q 11. | Page 563

A और B स्वतंत्र घटनाएँ दी गई हैं जहाँ P(A) = 0.3, P(B) = 0.6 तो

  1. P(A और B)
  2. P(A और B - नहीं)
  3. P(A या B)
  4. P(A और B में कोई भी नहीं) का मान ज्ञात कीजिए।
प्रश्नावली 13.2 | Q 12. | Page 563

एक पाँसे को तीन बार उछाला जाता है कम से कम एक बार विषम संख्या प्राप्त होने की प्राकियता ज्ञात कीजिए।

प्रश्नावली 13.2 | Q 13. | Page 563

दो गेंदें एक बॉक्स से बिना प्रतिस्थापित किए निकाली जाती है। बॉक्स में 10 काली और 8 लाल गेंदें हैं तो प्रायिकता ज्ञात कीजिए

  1. दोनों गेंदें लाल हों
  2. प्रथम काली एवं दूसरी लाल हो
  3. एक काली तथा दूसरी लाल हो।
प्रश्नावली 13.2 | Q 14. | Page 564

एक विशेष समस्या को A और B द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमशः `1/2` और `1/3` हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि

  1. समस्या हल हो जाता है।
  2. उनमें से तथ्यतः कोई एक समस्या हल कर लेता है।
प्रश्नावली 13.2 | Q 15. (i) | Page 564

ताश के 52 पतों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छ्या निकला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ E और F स्वतंत्र है?

E : 'निकला गया पत्ता हुकुम का है'

F : 'निकला गया पत्ता इक्का है'

प्रश्नावली 13.2 | Q 15. (ii) | Page 564

ताश के 52 पतों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छ्या निकला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ E और F स्वतंत्र है?

E : 'निकला गया पत्ता काले रंग का है'

F : 'निकला गया पत्ता एक बादशाह है'

प्रश्नावली 13.2 | Q 15. (iii) | Page 564

ताश के 52 पतों की एक सुमिश्रित गड्डी से एक पत्ता यादृच्छ्या निकला जाता है। निम्नलिखित में से किन दशाओं में घटनाएँ E और F स्वतंत्र है?

E : 'निकला गया पत्ता एक बादशाह या एक बेगम है'

F : 'निकला गया पत्ता एक बेगम या एक गुलाम है'

प्रश्नावली 13.2 | Q 16. (a) | Page 564

एक छात्रावास में 60% विद्यार्थी हिंदी का, 40% अंग्रेजी का और 20% दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

प्रायिकता ज्ञात कीजिए कि वह न तो हिंदी और न ही अंग्रेजी का अखबार पढ़ती है।

प्रश्नावली 13.2 | Q 16. (b) | Page 564

एक छात्रावास में 60% विद्यार्थी हिंदी का, 40% अंग्रेजी का और 20% दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

यदि वह हिंदी का अखबार पढ़ती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।

प्रश्नावली 13.2 | Q 16. (c) | Page 564

एक छात्रावास में 60% विद्यार्थी हिंदी का, 40% अंग्रेजी का और 20% दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

यदि वह अंग्रेजी का अखबार पढ़ती है तो उसके हिंदी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।

प्रश्नावली 13.2 | Q 17. | Page 564

यदि पासों का एक जोड़ा उछला जाता है तो प्रत्येक पासे पर सम अभाज्य संख्या प्राप्त करने की प्रक्रियता निम्नलिखित में से क्या है?

  • 0

  • `1/3`

  • `1/12`

  • `1/36`

प्रश्नावली 13.2 | Q 18. | Page 564

दो घटनाओं A और B को परस्पर स्वतंत्र कहते है, यदि

  • A और B को परस्पर अपवर्जी हैं।

  • P(A'B') = [1 − P(A)][1 − P(B)]

  • P(A) = P(B)

  • P(A) + P(B) = 1

प्रश्नावली 13.3 [Pages 572 - 574]

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 13 प्रायिकता प्रश्नावली 13.3 [Pages 572 - 574]

प्रश्नावली 13.3 | Q 1. | Page 572

एक कलश में 5 लाल और 5 काली गेंदें हैं। यादृच्छया एक गेंद निकाली जाती है, इसका रंग नोट करने के बाद पुनः कलश में रख दी जाती है। पुनः निकाले गए रंग की 2 अतिरिक्त गेंदें कलश में रख दी जाती है तथा कलश में से एक गेंद निकाली जाती है। दूसरी गेंदे की लाल होने की प्रायिकता क्या है?

प्रश्नावली 13.3 | Q 2. | Page 572

एक थैले में 4 लाल और 4 काली गेंदें हैं और एक अन्य थैले में 2 लाल और 6 काली गेंदें हैं। दोनों थैलों में से एक को यादृच्छया चुना जाता है और उसमें एक गेंद निकाली जाती है जो कि लाल है। इस बात की क्या प्रायिकता है कि गेंद पहले थैले से निकाली गई है?

प्रश्नावली 13.3 | Q 3. | Page 572

यह ज्ञात है कि एक महाविद्यालय के छात्रों में से 60% छात्रावास में रहते हैं और 40% छात्रावास में नहीं रहते हैं। पूर्ववर्ती वर्ष के परिणाम सूचित करते हैं कि छात्रावास में रहने वाले छात्रों में से 30% और छात्रावास में न रहने वाले छात्रों में से 20% छात्रों ने A-ग्रेड लिया। वर्ष के अंत में महाविद्यालय के एक छात्र को यादृच्छाया चुना गया और यह पाया गया कि उसे A-ग्रेड मिला है। इस बात की क्या प्रक्रियता है कि वह छात्र छात्रवास में रहने वाला है?

प्रश्नावली 13.3 | Q 4. | Page 573

एक बहुविकल्पीय प्रश्न का उतर देने में एक विद्यार्थी या तो प्रश्न का उत्तर जानता है या वह अनुमान लगाता है। मान लें कि उसके उत्तर जानने की प्रायिकता `3/4` और अनुमान लगाने की प्रायिकता `1/4` है। मान लें कि छात्र के प्रश्न के उत्तर का अनुमान लगाने पर सही उत्तर देने की प्रायिकता `1/4` है तो इस बात की क्या प्रायिकता है की कोई छात्र प्रश्न का उत्तर जानता है यदि यह ज्ञात है कि उसने सही उत्तर दिया है?

प्रश्नावली 13.3 | Q 5. | Page 573

किसी विशेष रोग के सही निदान के लिए रक्त की जाँच 99% असरदार है, जब वास्तव में रोगी उस रोग से ग्रस्त होता है। किंतु 0.5% बार किसी स्वस्थ व्यक्ति की रक्त जाँच करने पर निदान गलत रिपोर्ट देता है यानी व्यक्ति को रोग से ग्रस्त बतलाता है। यदि किसी जनसमुदाय में 0.1% लोग उस रोग से ग्रस्त हैं तो क्या प्रायिकता है कि कोई यादृच्छया चुना गया व्यक्ति उस रोग से ग्रस्त होगा यदि उसके रक्त की जाँच में यह बताया जाता है कि उसे यह रोग है?

प्रश्नावली 13.3 | Q 6. | Page 573

तीन सिक्के दिए गए हैं। एक सिक्के के दोनों ओर चित ही है। दूसरा सिक्का अभिनत है जिसमें चित 75% बार प्रकट होता है और तीसरा अनभिनत सिक्का है। तीनों में से एक सिक्के को यादृच्छया चुना गया और उसे उछाला गया है। यदि सिक्के पर चित प्रकट हो, तो क्या प्रायिकता है कि वह दोनों चित वाला सिक्का है?

प्रश्नावली 13.3 | Q 7. | Page 573

एक बीमा कंपनी 2000 स्कूटर चालकों, 4000 कार चालकों और 6000 ट्रक चालकों का बीमा करती है। दुर्घटनाओं की प्रायिकताएँ क्रमशः 0.01, 0.03 और 0.15 है। बीमाकृत व्यक्तियों (चालकों) में से एक दुर्घटनाग्रस्त हो जाता है। उस व्यक्ति के स्कूटर चालक होने की प्रायिकता क्या है?

प्रश्नावली 13.3 | Q 8. | Page 573

एक कारखाने में A और B दो मशीने लगी हैं। पूर्व विवरण से पता चलता है कि कुल उत्पादन का 60% मशीन A और 40% मशीन B द्वारा किया जाता है। इसके अतिरिक्त मशीन A का 2% और मशीन B का 1% उत्पादन खराब है। यदि कुल उत्पादन का एक ढेर बना लिया जाता है और उसे ढेर से यादृच्छया निकाली गई वस्तु खराब हो, तो इस वस्तु के 'मशीन A' द्वारा बने होने की प्रायिकता क्या होगी?

प्रश्नावली 13.3 | Q 9. | Page 573

दो दल एक निगम के निदेशक मंडल में स्थान पाने की प्रतिस्पर्धा में हैं। पहले तथा दूसरे दल के जीतने की प्रक्रियताएँ क्रमश: 0.6 तथा 0.4 हैं। इसके अतिरिक्त यदि पहला दल जीतता है तो एक नए उत्पाद के प्रारंभ होने की प्रक्रियता 0.7 है और यदि दूसरा दल जीतता है तो इस बात की संगत प्रक्रियता 0.3 है। इसकी प्रक्रियता ज्ञात कीजिए कि नया उत्पादन दूसरे दाल द्वारा प्रारंभ किया गया था।

प्रश्नावली 13.3 | Q 10. | Page 573

मान लीजिए कि कोई लड़की एक पाँसा उछालती है। यदि उसे 5 या 6 की संख्या प्राप्त होती है तो वह एक सिक्के को तीन बार उछालती है और ‘चितों' की संख्या नोट करती है। यदि उसे 1, 2, 3 या 4 की संख्या प्राप्त होती है तो वह एक सिक्के को एक बार उछालती है और यह नोट करती है कि उस पर 'चित' या 'पट' प्राप्त हुआ। यदि उसे ठीक एक चित प्राप्त होता है, तो उसके द्वारा उछाले गए पाँसे पर 1, 2, 3 या 4 प्राप्त होने की प्रायिकता क्या है?

प्रश्नावली 13.3 | Q 11. | Page 574

एक व्यावसायिक निर्माता के पास A, B तथा C मशीन ऑपरेटर हैं। प्रथम ऑपरेटर A,1% खराब सामग्री उत्पादित करता हैं तथा ऑपरेटर B और C क्रमशः 5% और 7% खराब सामग्री उत्पादित करता है। कार्य पर A कुल समय का 50% लगाता है, B कुल समय का 30% तथा C कुल समय का 20% लगाता है। यदि एक खराब सामग्री उत्पादित है तो इसे A द्वारा उत्पादित किए जाने की प्रायिकता क्या है?

प्रश्नावली 13.3 | Q 12. | Page 574

52 ताशों की गड्डी से एक पत्ता खो जाता है। शेष पत्तों से दो पत्ते निकाले जाते हैं जो ईंट के पत्ते हैं। खो गये पत्ते की ईंट होने की प्रायिकता क्या है?

प्रश्नावली 13.3 | Q 13. | Page 574

A द्वारा सत्य बोलने की प्रक्रियता `4/5` है। एक सिक्का उछाला जाता है तथा A बताता है कि चित प्रदर्शित हुआ। वास्तविक रूप में चित प्रकट होने की प्रक्रियता है:

  • `4/5`

  • `1/2`

  • `1/5`

  • `2/5`

प्रश्नावली 13.3 | Q 14. | Page 574

यदि A और B ऐसी घटनाएँ है कि A ⊂ B तथा P(B) ≠ 0 तो निम्न में से कौन ठीक है:

  • P(A|B) = `("P"("B"))/("P"("A"))`

  • P(A|B) < P(A)

  • P(A|B) ≥ P(A)

  • इनमें से कोई नहीं

प्रश्नावली 13.4 [Pages 586 - 588]

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 13 प्रायिकता प्रश्नावली 13.4 [Pages 586 - 588]

प्रश्नावली 13.4 | Q 1. (i) | Page 586

बताइए कि निम्नलिखित प्रायिकता बंटनों में कौन-से एक यादृच्छिक चर के लिए संभव नहीं है। अपना उत्तर कारण सहित लिखिए।

X 0 1 2
P(X) 0.4 0.4 0.2
प्रश्नावली 13.4 | Q 1. (ii) | Page 586

बताइए कि निम्नलिखित प्रायिकता बंटनों में कौन-से एक यादृच्छिक चर के लिए संभव नहीं है। अपना उत्तर कारण सहित लिखिए।

X 0 1 2 3 4
P(X) 0.1 0.5 0.2 −0.1 0.3
प्रश्नावली 13.4 | Q 1. (iii) | Page 586

बताइए कि निम्नलिखित प्रायिकता बंटनों में कौन-से एक यादृच्छिक चर के लिए संभव नहीं है। अपना उत्तर कारण सहित लिखिए।

Y −1 0 1
P(Y) 0.6 0.1 0.2
प्रश्नावली 13.4 | Q 1. (iv) | Page 586

बताइए कि निम्नलिखित प्रायिकता बंटनों में कौन-से एक यादृच्छिक चर के लिए संभव नहीं है। अपना उत्तर कारण सहित लिखिए।

Z 3 2 1 0 −1
P(Z) 0.3 0.2 0.4 0.1 0.05
प्रश्नावली 13.4 | Q 2. | Page 586

एक कलश में 5 लाल और 2 काली गेंद हैं। दो गेंद यादृच्छया निकाली गई। मान लीजिए X काली गेंदों की संख्या को व्यक्त करता है। X के संभावित मान क्या हैं? क्या X यादृच्छिक चर है ?

प्रश्नावली 13.4 | Q 3. | Page 586

मान लीजिए X चितों की संख्या और पटों की संख्या में अंतर को व्यक्त करता है, जब एक सिक्के को 6 बार उछाला जाता है। X के संभावित मूल्य क्या हैं?

प्रश्नावली 13.4 | Q 4. (i) | Page 586

निम्नलिखित के प्रायिकता बंटन ज्ञात कीजिए:

एक सिक्के की दो उछालों में चितों की संख्या का

प्रश्नावली 13.4 | Q 4. (ii) | Page 586

निम्नलिखित के प्रायिकता बंटन ज्ञात कीजिए:

तीन सिक्कों को एक साथ एक बार उछालने पर पटों की संख्या का

प्रश्नावली 13.4 | Q 4. (iii) | Page 586

निम्नलिखित के प्रायिकता बंटन ज्ञात कीजिए:

एक सिक्के की चार उछालों में चितों की संख्या का

प्रश्नावली 13.4 | Q 5. | Page 586

एक पाँसा दो बार उछालने पर सफलता की संख्या का प्रायिकता बंटन ज्ञात कीजिए जहाँ

  1. ‘4 से बड़ी संख्या’ को एक सफलता माना गया है।
  2. ‘पाँसे पर संख्या 6 प्रकट होना’ को एक सफलता माना गया है।
प्रश्नावली 13.4 | Q 6. | Page 586

30 बल्बों के एक ढेर से, जिसमें 6 बल्ब खराब हैं, 4 बल्बों का एक नमूना (प्रतिदर्श) यादृच्छया बिना प्रतिस्थापन के निकाला जाता है। खराब बल्बों की संख्या का प्रायिकता बंटन ज्ञात कीजिए।

प्रश्नावली 13.4 | Q 7. | Page 586

एक सिक्का समसर्वय संतुलित नहीं है जिसमें चित प्रकट होने की संभावना पट प्रकट होने की सम्भावना की तीन गुनी है। यदि सिक्का दो बार उछाला जाता है तो पटों की संख्या का प्रायिकता बंटन ज्ञात कीजिए।

प्रश्नावली 13.4 | Q 8. | Page 587

एक यादृच्छिक चर X का प्रायिकता बंटन नीचे दिया गया है। 

X 0 1 2 3 4 5 6 7
P(X) 0 k 2k 2k 3k k2 2k2 7k2 + k

ज्ञात कीजिए

  1. k
  2. P(X < 3)
  3. P(X > 6)
  4. P(0 < X < 3)
प्रश्नावली 13.4 | Q 9. | Page 587

एक यादृच्छिक चर X का प्रायिकता फलन P(X) निम्न प्रकार से है, जहाँ k कोई संख्या है।

`P("X") {("k", "यदि X" = 0),(2"k", "यदि X" = 1),(3"k", "यदि X" = 2),(0, "अन्यथा"):}`

  1. k का मान ज्ञात कीजिए।
  2. P(X < 2), (X ≤ 2), P(X ≥ 2) ज्ञात कीजिए।
प्रश्नावली 13.4 | Q 10. | Page 587

एक न्याय्य सिक्के की तीन उछालों पर प्राप्त चितों की संख्या का माध्य ज्ञात कीजिए।

प्रश्नावली 13.4 | Q 11. | Page 587

दो पाँसों को युग्मत् उछाला गया। यदि X, छक्कों की संख्या को व्यक्त करता है, तो X की प्रत्याशा ज्ञात कीजिए।

प्रश्नावली 13.4 | Q 12. | Page 587

प्रथम छः धन पूर्णांकों में से दो संख्याएँ यादृच्छया (बिना प्रतिस्थापन) चुनी गई। मान लें X दोनों संख्याओं में से बड़ी संख्या को व्यक्त करता है। E(X) ज्ञात कीजिए।

प्रश्नावली 13.4 | Q 13. | Page 587

मान लीजिए दो पाँसों को फेंकने पर प्राप्त संख्याओं के योग को X से व्यक्त किया गया है। X का प्रसारण और मानक विचलन ज्ञात कीजिए।

प्रश्नावली 13.4 | Q 14. | Page 587

एक कक्षा में 15 छात्र हैं जिनकी आयु 14, 17, 15, 14, 21, 17, 19, 20, 16, 18, 20, 17, 16, 19 और 20 वर्ष हैं। एक छात्र को इस प्रकार चुना गया कि प्रत्येक छात्र के चुने जाने की संभावना समान है और चुने गए छात्र की आयु (X) को लिखा गया। यादृच्छिक चर X का प्रायिकता बंटन ज्ञात कीजिए। X का माध्य, प्रसरण व मानक विचलन भी ज्ञात कीजिए।

प्रश्नावली 13.4 | Q 15. | Page 587

एक बैठक में 70% सदस्यों ने किसी प्रस्ताव का अनुमोदन किया और 30% सदस्यों ने विरोध किया। एक सदस्य को यादृच्छया चुना गया और, यदि उस सदस्य ने प्रस्ताव का विरोध किया हो तो X = 0 लिया गया, जब कि यदि उसने प्रस्ताव का अनुमोदन किया हो तो X = 1 लिया गया। E(X) और प्रसरण (X) ज्ञात कीजिए।

निम्नलिखित में से प्रत्येक में सही उत्तरे चुनें।।

प्रश्नावली 13.4 | Q 16. | Page 587

ऐसे पाँसे, जिसके तीन फलकों पर 1 अन्य तीन पर 2 और एक फलक पर 5 लिखा गया है, को उछालने पर प्राप्त संख्याओं का माध्य है:

  • 1

  • 2

  • 5
  • `8/13`

प्रश्नावली 13.4 | Q 17. | Page 588

मान लीजिए ताश की एक गड्डी से यादृच्छया दो पत्ते निकाले जाते हैं। मान लीजिए X इक्कों की संख्या प्रकट करता है। तब E(X) का मान है:

  • `37/221`

  • `5/13`

  • `1/13`

  • `2/13`

प्रश्नावली 13.5 [Pages 593 - 594]

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 13 प्रायिकता प्रश्नावली 13.5 [Pages 593 - 594]

प्रश्नावली 13.5 | Q 1. | Page 593

एक पाँसे को 6 बार उछाला जाता है। यदि ‘पाँसे पर सम संख्या प्राप्त होना’ एक सफलता है तो निम्नलिखित की प्रायिकताएँ क्या होंगी?

  1. तथ्यतः 5 सफलताएँ?
  2. न्यूनतम 5 सफलताएँ?
  3. अधिकतम 5 सफलताएँ?
प्रश्नावली 13.5 | Q 2. | Page 593

पाँसों के एक जोड़े को 4 बार उछाला जाता है। यदि 'पाँसों पर प्राप्त अंकों का द्विक होना', एक सफलता मानी जाती है, तो 2 सफलताओं की प्रायिकता ज्ञात कीजिए।

प्रश्नावली 13.5 | Q 3. | Page 593

वस्तुओं के एक ढेर में 5% त्रुटियुक्त वस्तुएँ है। इसकी क्या प्रायिकता है कि 10 वस्तुओं के एक प्रतिदर्श में एक से अधिक त्रुटियुक्त वस्तुएँ नहीं होंगी?

प्रश्नावली 13.5 | Q 4. | Page 593

52 ताश के पत्तों की एक भली-भाँति फेंटी गई गड्डी में से 5 पत्ते उत्तरोतर प्रतिस्थापना सहित निकाले जाते हैं। इसकी क्या प्रायिकता है कि

  1. सभी 5 पत्ते हुकुम के हों?
  2. केवल 3 पत्ते हुकुम के हों?
  3. एक भी पत्ता हुकुम का नहीं हो?
प्रश्नावली 13.5 | Q 5. | Page 593

किसी फ़ैक्ट्री में बने एक बल्ब की 150 दिनों के उपयोग के बाद फ्यूज़ होने की प्रायिकता 0.05 है। इसकी प्रायिकता ज्ञात कीजिए कि इस प्रकार के 5 बल्बों में से

  1. एक भी नहीं
  2. एक से अधिक नहीं
  3. एक से अधिक
  4. कम-से-कम एक, 150 दिनों के उपयोग के बाद फ्यूज़ हो जाएँगे।
प्रश्नावली 13.5 | Q 6. | Page 593

एक थैले में 10 गेंदें है जिनमें से प्रत्येक पर 0 से 9 तक के अंकों में से एक अंक लिखा है। यदि थैले से 4 गेंदें उत्तरोतर पुनः वापस रखते हुए निकाली जाती है, तो इसकी क्या प्रायिकता है कि उनमें से किसी भी गेंद पर अंक 0 न लिखा हो?

प्रश्नावली 13.5 | Q 7. | Page 593

एक सत्य-असत्य प्रकार के 20-प्रश्नों वाली परीक्षा में मान लें कि एक विद्यार्थी एक न्याय्य सिक्के को उछाल कर प्रत्येक प्रश्न का उत्तर निर्धारित करता है। यदि पाँसे पर चित प्रकट हो तो वह प्रश्न का उत्तर ‘सत्य’ देता है और यदि पट प्रकट हो तो 'असत्य’ लिखता है। इस की प्रायिकता ज्ञात कीजिए कि वह कम से कम 12 प्रश्नों का सही उत्तर देता है।

प्रश्नावली 13.5 | Q 8. | Page 594

मान लीजिए कि X का बंटन `"B" (6,1/2)` द्विपद बंटन है। दर्शाएँ कि X = 3 अधिकतम प्रायिकता वाला परिणाम है।

(संकेत: P(X = 3) सभी P(xi), xi = 0, 1, 2, 3, 4, 5, 6 में से अधिकतम है)

प्रश्नावली 13.5 | Q 9. | Page 594

एक बहु-विकल्पीय परीक्षा में 5 प्रश्न है जिनमें प्रत्येक के तीन संभावित उत्तर हैं। इसकी क्या प्रायिकता है कि एक विद्यार्थी केवल अनुमान लगा कर चार या अधिक प्रश्नों के सही उत्तर दे देगा?

प्रश्नावली 13.5 | Q 10. | Page 594

एक व्यक्ति एक लॉटरी के 50 टिकट खरीदता है, जिसमें उसके प्रत्येक में जीतने की प्रायिकता `1/100` है। इसकी क्या प्रायिकता है कि वह (a) न्यूनतम एक बार (b) तथ्यत: एक बार (c) न्यूनतम दो बार, इनाम जीत लेगा।

प्रश्नावली 13.5 | Q 11. | Page 594

एक पाँसे को 7 बार उछालने पर तथ्यतः दो बार 5 आने की प्रायिकता ज्ञात कीजिए।

प्रश्नावली 13.5 | Q 12. | Page 594

एक पाँसे को छः बार उछालने पर अधिकतम 2 बार छः आने की प्रायिकता ज्ञात कीजिए।

प्रश्नावली 13.5 | Q 13. | Page 594

यह ज्ञात है कि किसी विशेष प्रकार की निर्मित वस्तुओं की संख्या में 10% खराब है। इसकी क्या प्रायिकता है कि इस प्रकार की 12 वस्तुओं के यादृच्छिक प्रतिदर्श में से 9 खराब हों?

प्रश्नावली 13.5 | Q 14. | Page 594

एक बॉक्स में 100 बल्ब हैं। जिसमें 10 त्रुटियुक्त हैं। 5 बल्ब के नमूने में से, किसी भी बल्ब के त्रुटियुक्त न होने की प्रायिकता है:

  • 10−1

  • `(1/2)^5`

  • `(9/10)^5`

  • `9/10`

प्रश्नावली 13.5 | Q 15. | Page 594

एक छात्र की तैराक न होने की प्रायिकता `1/5` है। तब 5 छात्रों में से 4 छात्रों की तैराक होने की प्रायिकता है:

  • `""^5"C"_4 (4/5)^4 1/5`

  • `(4/5)^4 1/5`

  • `""^5"C"_1 1/5 (4/5)^4`

  • इनमें से कोई नहीं

अध्याय 13 पर विविध पश्नावली [Pages 599 - 601]

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] Chapter 13 प्रायिकता अध्याय 13 पर विविध पश्नावली [Pages 599 - 601]

अध्याय 13 पर विविध पश्नावली | Q 1. (i) | Page 599

A और B इस प्रकार घटनाएँ हैं कि P(A) ≠ 0. P(B|A) ज्ञात कीजिए यदि A, समुच्चय B का उपसमुच्चय है।

अध्याय 13 पर विविध पश्नावली | Q 1. (ii) | Page 599

A और B इस प्रकार घटनाएँ हैं कि P(A) ≠ 0. P(B|A) ज्ञात कीजिए यदि A ∩ B = Φ।

अध्याय 13 पर विविध पश्नावली | Q 2. (i) | Page 599

एक दंपति के दो बच्चे हैं, दोनों बच्चों के लड़का होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात हैं कि दोनों बच्चों में से कम से कम एक बच्चा लड़का है।

अध्याय 13 पर विविध पश्नावली | Q 2. (ii) | Page 599

एक दंपति के दो बच्चे हैं, दोनों बच्चों के लड़की होने की प्रायिकता ज्ञात कीजिए यदि यह ज्ञात है कि बड़ा बच्चा लड़की है।

अध्याय 13 पर विविध पश्नावली | Q 3. | Page 599

कल्पना लीजिए कि 5% पुरुषों और 0.25% महिलाओं के बाल सफ़ेद हैं। एक सफ़ेद बालों वाले व्यक्ति को यादृच्छिक चुना गया है। इस व्यक्ति के पुरुष होने की प्रायिकता क्या है? यह मान लें कि पुरुषों और महिलाओं की संख्या समान है।

अध्याय 13 पर विविध पश्नावली | Q 4. | Page 599

मान लीजिए कि 90% लोग दाहिने हाथ से काम करने वाले हैं। इसकी प्रायिकता क्या है कि 10 लोगों में से यादृच्छया चुने गए अधिक से अधिक 6 लोग दाहिने हाथ से काम करने वाले हों?

अध्याय 13 पर विविध पश्नावली | Q 5. | Page 599

एक कलश (पात्र) में 25 गेंदें हैं, जिनमें से 10 गेंदों पर चिन्ह 'X' अंकित है और शेष 15 पर चिन्ह 'Y' अंकित है। कलश में से एक गेंद यादृच्छया निकाली जाती है और उस पर अंकित चिन्ह को नोट (लिख) करके उसे कलश में प्रतिस्थापित कर दिया जाता है। यदि इस प्रकार से 6 गेंदें निकाली जाती हों, तो अग्रलिखित प्रायिकताएँ ज्ञात कीजिए। 

  1. सभी पर चिन्ह 'X' अंकित हो।
  2. 2 से अधिक पर चिन्ह 'Y' नहीं अंकित हो।
  3. कम से कम 1 गेंद पर चिन्ह 'Y' अंकित हो।
  4. 'X' तथा 'Y' चिन्हों से अंकित गेंदों की संख्याएँ समान हों।

'X' चिन्ह से अंकित गेंदों की संख्या का माध्य भी ज्ञात कीजिए।

अध्याय 13 पर विविध पश्नावली | Q 6. | Page 599

एक बाधा दौड़ में एक प्रतियोगी को 10 बाधाएँ पार करनी है इसकी प्रायिकता कि वह प्रत्येक बाधा को पार कर लेगा `5/6` है। इसकी क्या प्रायिकता है कि वह 2 से कम बाधाओं को गिरा देगा (नहीं पार कर पाएगा)?

अध्याय 13 पर विविध पश्नावली | Q 7. | Page 599

एक पाँसे को बार-बार तब तक उछाला जाता है जब तक कि उस पर 6 का अंक तीन बार प्राप्त नहीं हो जाता। इसकी प्रायिकता ज्ञात कीजिए कि पासे पर तीसरा 6 का अंक उसे छठी बार उछालने पर प्राप्त होता है।

अध्याय 13 पर विविध पश्नावली | Q 8. | Page 599

यदि एक लीप वर्ष को यादृच्छया चुना गया हो तो इसकी क्या प्रायिकता है कि उस वर्ष में 53 मंगलवार होंगे।

अध्याय 13 पर विविध पश्नावली | Q 9. | Page 599

एक प्रयोग के सफल होने का संयोग उसके असफल होने से दो गुना है। प्रायिकता ज्ञात कीजिए कि अगले छः परीक्षणों में कम से कम 4 सफल होंगे।

अध्याय 13 पर विविध पश्नावली | Q 10. | Page 600

एक व्यक्ति एक न्याय्य सिक्के को कितनी बार उछाले कि कम से कम एक चित की प्रायिकता 90% से अधिक हो?

अध्याय 13 पर विविध पश्नावली | Q 11. | Page 600

एक खेल में किसी व्यक्ति को एक न्याय्य पाँसे को उछालने के बाद छः प्रकट होने पर एक रुपया मिलता है और अन्य कोई संख्या प्रकट होने पर वह एक रुपया हार जाता है। एक व्यक्ति यह निर्णय लेता है, कि वह पाँसे को तीन बार फेंकेगा लेकिन जब भी छः प्राप्त होगा वह खेलना छोड़ देगा। उसके द्वारा जीती/हारी गई राशि की प्रत्याशा ज्ञात कीजिए।

अध्याय 13 पर विविध पश्नावली | Q 12. | Page 600

मान लीजिए हमारे पास A, B, C और D बक्से हैं जिसमें रखी संगमरमर की लाल, सफेद और काली टुकड़ियों का विवरण निम्न तरीके से है यादृच्छया एक बॉक्स चुना जाता है तथा इससे एक टुकड़ा निकाला जाता है। यदि टुकड़ा लाल हो तो इसे बॉक्स A, बॉक्स B, बॉक्स C से निकाले जाने की क्या प्रायिकता है?

बॉक्स संगमरमर की टुकड़ियों का रंग
लाल सफेद काला
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4
अध्याय 13 पर विविध पश्नावली | Q 13. | Page 600

मान लीजिए किसी रोगी को दिल का दौरा पड़ने का संयोग 40% है। यह मान लिया जाता है कि ध्यान ओर योग विधि दिल का दौरा पड़ने के खतरे को 30% कम कर देता है और दवा द्वारा खतरे को 25% कम किया जा सकता है। किसी भी समय रोगी इन दोनों में से किसी एक विकल्प का चयन करता है। यह दिया गया है कि उपरोक्त विकल्पों से किसी एक का चुनाव करने वाले रोगियों से यादृच्छया चुना गया रोगी दिल के दौरे से ग्रसित हो जाता है। रोगी द्वारा ध्यान और योग विधि का उपयोग किए जाने की प्रायिकता ज्ञात कीजिए।

अध्याय 13 पर विविध पश्नावली | Q 14. | Page 600

यदि 2 कोटि के एक सारणिक के सभी अवयव शून्य या एक हो तो सारणिक का धनात्मक मान होने की क्या प्रायिकता हैं। (मान लीजिए की सारणिक के प्रत्येक अवयव स्वतंत्र रूप से चुने जा सकते हैं तथा प्रत्येक की चुने जाने की प्रायिकता `1/2` है।)

अध्याय 13 पर विविध पश्नावली | Q 15. | Page 600

एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय A और B हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है:

P(A के असफल होने की) = 0.2

P(B के अकेले असफल होने की) = 0.15

P(A और B के असफल होने की) = 0.15

तो, निम्न प्रायिकताएँ ज्ञात कीजिए:

  1. P(A असफल/B असफल हो चुकी हो)
  2. P(A के अकेले असफल होने की)
अध्याय 13 पर विविध पश्नावली | Q 16. | Page 601

थैला I में 3 लाल तथा 4 काली गेंदें है तथा थैला II में 4 लाल और 5 काली गेंदें हैं। एक गेंद को थैला I से थैला II में स्थानांतरित किया जाता है और तब एक गेंद थैला II से निकाली जाती है। निकाली गई गेंद लाल रंग की है। स्थानांतरित गेंद की काली होने की प्रायिकता ज्ञात कीजिए।

निम्नलिखित प्रश्नों में सही उत्तर का चुनाव कीजिए:

अध्याय 13 पर विविध पश्नावली | Q 17. | Page 601

यदि A और B दो ऐसी घटनाएँ हैं कि P(A) ≠ 0 और `"P"("B"/"A")` = 1, तब

  • A ⊂ B

  • B ⊂ A

  • B = Φ

  • A = Φ

अध्याय 13 पर विविध पश्नावली | Q 18. | Page 601

यदि `"P"("A"|"B") > "P"("A")`, तब निम्न में से कौन सही है।

  • `"P"("B"|"A") < "P"("B")`

  • P(A ∩ B) < P(A) . P(B)

  • `"P"("B"|"A") > "P"("B")`

  • `"P"("B"|"A") = "P"("B")`

अध्याय 13 पर विविध पश्नावली | Q 19. | Page 601

यदि A और B ऐसी दो घटनाएँ हैं कि P(A) + P(B) – P(A और B) = P(A), तब

  • P(B|A) = 1

  • P(A|B) = 1

  • P(B|A) = 0

  • P(A|B) = 0

Advertisement Remove all ads

Chapter 13: प्रायिकता

प्रश्नावली 13.1प्रश्नावली 13.2प्रश्नावली 13.3प्रश्नावली 13.4प्रश्नावली 13.5अध्याय 13 पर विविध पश्नावली
NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 13 - प्रायिकता - Shaalaa.com

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 13 - प्रायिकता

NCERT solutions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 13 (प्रायिकता) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] solutions in a manner that help students grasp basic concepts better and faster.

Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] chapter 13 प्रायिकता are प्रायिकता, सप्रतिबंध प्रायिकता, प्रायिकता पर गुणन प्रमेय, स्वतंत्र घटनाएँ, बेज़-प्रमेय, यादृच्छिक चर और इसके प्रायिकता बंटन, एक यादृच्छिक चर की प्रायिकता बंटन, यादृच्छिक चर का माध्य, यादृच्छिक चर का प्रसरण, बरनौली परीक्षण, द्विपद बंटन.

Using NCERT Class 12 [१२ वीं कक्षा] solutions प्रायिकता exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in NCERT Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 12 [१२ वीं कक्षा] prefer NCERT Textbook Solutions to score more in exam.

Get the free view of chapter 13 प्रायिकता Class 12 [१२ वीं कक्षा] extra questions for Mathematics Part 1 and 2 Class 12 [गणित भाग १ व २] and can use Shaalaa.com to keep it handy for your exam preparation

Advertisement Remove all ads
Share
Notifications



      Forgot password?
View in app×