Chapters
Chapter 2: प्रतिलोम तिरिकोंमितिया फलन
Chapter 3: आव्यूह
Chapter 4: सारणिक
Chapter 5: सांतत्य और अवकलनीयता
Chapter 6: अवकलज के अनुप्रयोग
Chapter 7: समाकल
Chapter 8: स्माकलो के अनुप्रयोग
Chapter 9: अवकल समीकरण
Chapter 10: सदिश बीजगणित
Chapter 11: त्रिविमयि ज्यामिति
Chapter 12: रैखिक प्रोग्रामन
Chapter 13: प्रायिकता
![NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 8 - स्माकलो के अनुप्रयोग NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 8 - स्माकलो के अनुप्रयोग - Shaalaa.com](/images/mathatics-exemplar-class-12-ganit-eksemplr-12-vin-kksaa_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Chapter 8: स्माकलो के अनुप्रयोग
NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] Chapter 8 स्माकलो के अनुप्रयोग हल किए हुए उदाहरण [Pages 166 - 172]
लघु उत्तरीय प्रश्न
0 और π के बीच, वक्र y = sin x का क्षेत्रफल ज्ञात कीजिए।
वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय y2 = 2x और सरल रेखा x - y = 4 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घ उत्तरीय
उस क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जो परवलय y = `(3x^2)/4` और रेखा 3x - 2y + 12 = 0 के बीच में परिबद्ध है।
वक्र x = at2 और y = 2at द्वारा t = 1 और t = 2 के संगत कोटियों के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
x-अक्ष के ऊपर परवलय y2 = ax और वृत्त x2 + y2 = 2ax के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x = `"a"/2` द्वारा वृत्त x2 + y2 = a2 के काटे गए एक लघु वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।
वस्तुनिष्ठ प्रश्न 10 से 12 तक
वृत्त x2 + y2 = 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है
4π वर्ग इकाई
`2sqrt2pi` वर्ग इकाई
4π2 वर्ग इकाई
2π वर्ग इकाई
दीर्घवृत्त `x^2/"a"^2 + y^2/"b"^2` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल बराबर है
π2 ab
πab
πa2b
πab2
वक्र y = x2 और रेखा y = 16 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
`32/3`
`256/3`
`64/3`
`128/3`
उदाहरण 13 और 14 में से प्रत्येक में रिक्त स्थान भरिए-
वक्र x = y2 , y-अक्ष तथा रेखा y = 3 और y = 4 से परिबद्ध क्षेत्र का क्षेत्रफल ______ है।
वक्र y = x2 + x, x-अक्ष तथा x = 2 और x = 5 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल के ______ बराबर है।
NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] Chapter 8 स्माकलो के अनुप्रयोग प्रश्नावली [Pages 172 - 174]
संक्षिप्त उत्तरीय प्रश्न
वक्र y2 = 9x, और y = 3x से परिबद्ध क्षेत्रफल का क्षेत्रफल ज्ञात कीजिए।
परवलय y2 = 2px, और x2 = 2py से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = x3 , y = x + 6 और x = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y2 = 4x और x2 = 4y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
y2 = 9x और y = x बीच में पड़ने वाले क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय x2 = y और रेखा y = x + 2 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x = 2 और परवलय y2 = 8x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
क्षेत्र `{(x, 0) : y = sqrt(4 - x^2)}` और x-अक्ष का चित्रण कीजिए। समाकलन का उपयोग करते हुए इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 2`sqrtx` के अंतर्गत x = 0 और x = 1 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
समाकलन का इस्तेमाल करते हुए, रेखा 2y = 5x + 7, x-अक्ष तथा x = 2 और x = 8 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt(x - 1)` का अंतराल [1, 5] में एक संभावित आकृति खींचिए। इस वक्र के अंतर्गत तथा x = 1 और x = 5 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt("a"^2 - x^2)` के अंतर्गत तथा x = 0 और x = a रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
y = `sqrtx` और y = x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = –x2 और सरल रेखा x + y + 2 = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थाश में वक्र y = `sqrtx, x = 2y + 3` और x-अक्ष से परिबद्ध क्षेत्रफल ज्ञात कीजिए।
दीर्घ उत्तरीय प्रश्न
वक्र y2 = 2x और x2 + y2 = 4x से परिंबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
x = 0 और x = 2π के बीच वक्र y = sinx द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
समाकलन का प्रयोग करते हुए, उस त्रिभुज द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जिसके शीर्ष (-1, 1), (0, 5) और (3, 2) हैं।
क्षेत्र `{(x, "y") : "y"^2 ≤ 6"a"x "और" x^2 + "y"^2≤ 16"a"^2}` का एक संभावित आकृति खींचिए। साथ ही,समाकलन की विधि द्वारा इस क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखा x + 2y = 2, y – x = 1 और 2x + y = 7 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 1 + |x +1|, x = –3, x = 3 तथा y = 0 का एक संभावित आकृति खींचिए। समाकलन का प्रयोग करते हुए, इन से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
उद्देश्यात्मक प्रश्न 24 से 34 तक
y-अक्ष, y = cosx, y = sinx, 0 ≤ x ≤ `pi/2` से परिबद्ध क्षेत्र का क्षेत्रफल है
`sqrt2` वर्ग इकाई
`(sqrt2 + 1)` वर्ग इकाई
`(sqrt2 - 1)` वर्ग इकाई
`2(sqrt2 - 1)` वर्ग इकाई
वक्र x2 = 4y और सरल रेखा x = 4y – 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
`3/8` वर्ग इकाई
`5/8` वर्ग इकाई
`7/8` वर्ग इकाई
`9/8` वर्ग इकाई
वक्र y = `sqrt(16 - x^2)` और x-अक्ष से परिबद्ध क्षेत्र का क्षेत्रफल है
8π वर्ग इकाई
20π वर्ग इकाई
16π वर्ग इकाई
256π वर्ग इकाई
प्रथम चतुर्थाश में, x-अक्ष, रेखा y = x और वृत्त x2 + y2 = 32 द्वारा घिरे क्षेत्र का क्षेत्रफल है-
16π वर्ग इकाई
4π वर्ग इकाई
32π वर्ग इकाई
24π वर्ग इकाई
वक्र y = cosx द्वारा x = 0 और x = π के बीच में परिबद्ध क्षेत्र का क्षेत्रफल है
2 वर्ग इकाई
4 वर्ग इकाई
3 वर्ग इकाई
1 वर्ग इकाई
परवलय y2 = x और सरल रेखा 2y = x से परिबद्ध क्षेत्र का क्षेत्रफल है
`4/3` वर्ग इकाई
1 वर्ग इकाई
`2/3` वर्ग इकाई
`1/3` वर्ग इकाई
वक्र y = sinx द्वारा कोटि x = 0, और x = `pi/2` तथा x-अक्ष के बीच परिबद्ध क्षेत्र का क्षेत्रफल है
2 वर्ग इकाई
4 वर्ग इकाई
3 वर्ग इकाई
1 वर्ग इकाई
दीर्घवृत्त `x^2/25 + "y"^2/16` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
20π वर्ग इकाई
20π2 वर्ग इकाई
16π2 वर्ग इकाई
25π वर्ग इकाई
वृत्त x2 + y2 = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
2π वर्ग इकाई
π वर्ग इकाई
3π वर्ग इकाई
4π वर्ग इकाई
वक्र y = x + 1 तथा x = 2 और x = 3 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
`7/2` वर्ग इकाई
`9/2` वर्ग इकाई
`11/2` वर्ग इकाई
`13/2` वर्ग इकाई
वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
4 वर्ग इकाई
`3/2` वर्ग इकाई
6 वर्ग इकाई
8 वर्ग इकाई
Chapter 8: स्माकलो के अनुप्रयोग
![NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 8 - स्माकलो के अनुप्रयोग NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 8 - स्माकलो के अनुप्रयोग - Shaalaa.com](/images/mathatics-exemplar-class-12-ganit-eksemplr-12-vin-kksaa_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 8 - स्माकलो के अनुप्रयोग
NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 8 (स्माकलो के अनुप्रयोग) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] solutions in a manner that help students grasp basic concepts better and faster.
Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.
Concepts covered in Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 8 स्माकलो के अनुप्रयोग are साधारण वक्रों के अंतर्गत क्षेत्रफल, दो वक्रों के मध्यवर्ती क्षेत्र का क्षेत्रफल, समाकलनों के अनुप्रयोग.
Using NCERT Class 12 [१२ वीं कक्षा] solutions स्माकलो के अनुप्रयोग exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in NCERT Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 12 [१२ वीं कक्षा] prefer NCERT Textbook Solutions to score more in exam.
Get the free view of chapter 8 स्माकलो के अनुप्रयोग Class 12 [१२ वीं कक्षा] extra questions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] and can use Shaalaa.com to keep it handy for your exam preparation