Chapters
Chapter 2: प्रतिलोम तिरिकोंमितिया फलन
Chapter 3: आव्यूह
Chapter 4: सारणिक
Chapter 5: सांतत्य और अवकलनीयता
Chapter 6: अवकलज के अनुप्रयोग
Chapter 7: समाकल
Chapter 8: स्माकलो के अनुप्रयोग
Chapter 9: अवकल समीकरण
Chapter 10: सदिश बीजगणित
Chapter 11: त्रिविमयि ज्यामिति
Chapter 12: रैखिक प्रोग्रामन
Chapter 13: प्रायिकता
![NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 7 - समाकल NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 7 - समाकल - Shaalaa.com](/images/mathatics-exemplar-class-12-ganit-eksemplr-12-vin-kksaa_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Chapter 7: समाकल
NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] Chapter 7 समाकल हल किए हुए उदाहरण [Pages 143 - 159]
x के सापेक्ष `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` को समाकलित कीजिए।
`int (3"a"x)/("b"^2 + "c"^2x^2) "d"x` का मान निकालिए।
समाकलन की एक प्रतिअवकलज के रूप में अवधारणा का प्रयोग करते हुए, निम्नलिखित का सत्यापन कीजिए-
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
`int sqrt((1 + x)/(1 - x)) "d"x`, का मान निकालिए।
`int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha` का मान निकालिए।
`int tan ^8 xsec^4 x"d"x` का मान निकालिए।
`int x^3/(x^4 + 3x^2 +2)dx` ज्ञात कीजिए।
`int ("d"x)/(2sin^2x + 5 cos^2 x)` ज्ञात कीजिए।
योग की सीमा के रूप में, `int_-1^2 (7x - 5)"d"x` का मान निकालिए।
`int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x` का मान निकालिए।
`int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` ज्ञात कीजिए।
`int_0^(pi/4) sqrt(1 + sin2x) "d"x` ज्ञात कीजिए।
`int x^2tan^-1 x"d"x` ज्ञात कीजिए।
`int sqrt(10 - 4x + 4x^2) "d"x` ज्ञात कीजिए।
दीर्घ उत्तरीय
`int (x^2 "d"x)/(x^4 + x^2 - 2)` का मान निकालिए।
`(x^3 + x)/(x^4 - 9)"d"x` का मान निकालिए।
दर्शाइए कि `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_0^1 x (tan^-1 x)^2 "d"x` का मान ज्ञात कीजिए।
`int_-1^2 f (x) "d"x`, का मान निकालिए, जहाँ f (x) = |x + 1| + |x| +| x - 1|
वस्तुनिष्ठ प्रश्न 20 से 28 तक
`int "e"^x (cosx - sinx)"d"x` बराबर है
ex cos x + C
ex sin x + C
- ex cos x + C
- ex sin x + C
`int ("d"x)/(sin^2 x cos^2 x)` बराबर है
tanx + cotx + C
(tanx + cotx)2 + C
tanx – cotx + C
(tanx – cotx)2 + C
यदि `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C है, तो
a = `(-1)/8`, b = `7/8`
a = `1/8`, b = `7/8`
a = `(-1)/8`, b = `(-7)/8`
a = `1/8`, b = `(-7)/8`
`int_(a+c)^(b+c) "f" (x) "d"x` बराबर है
`int_"a"^"b" "f"(x - "c")"d"x`
`int_"a"^"b" "f"(x + "c")"d"x`
`int_"a"^"b" "f"(x)"d"x`
`int_("a" - "c")^("b" - "c") "f"(x)"d"x`
यदि [0, 1] में f और g ऐसे सतत फलन हैं, जो f (x) = f (a – x) और g (x) + g (a – x) = a, को संतुष्ट करते हैं, तो `int_0^a "f" (x) * "g"(x)"d"x` बराबर है
`a/2`
`"a"/2 int_0^"a" "f"(x)"d"x`
`int_0^"a" "f"(x)"d"x`
`"a" int_0^"a" "f"(x)"d"x`
यदि x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` और `("d"^2y)/("d"x^2)` = ay, है तो a बराबर है
3
6
9
1
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` बराबर है
log 2
2 log 2
`1/2log2`
4 log 2
यदि `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, है, तब `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` बराबर है
`"a" - 1 + "e"/2`
`"a" + 1 - "e"/2`
`"a" - 1 - "e"/2`
`"a" + 1 + "e"/2`
`int_(-2)^2 |x cos pix| "d"x` बराबर है
`8/pi`
`4/pi`
`2/pi`
`1/pi`
29 से 32 तक रिक्त स्थानों की पूर्ति कीजिए।
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 है, यदि f एक ______ फलन है।
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, यदि f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] Chapter 7 समाकल प्रश्नावली [Pages 159 - 165]
संक्षित उत्तर
निम्नलिखित का सत्यापन कीजिए-
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
निम्नलिखित का सत्यापन कीजिए-
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
निम्नलिखित के मान निकालिए-
`int ((x^2 + 2))/(x + 1) "d"x`
निम्नलिखित के मान निकालिए-
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
निम्नलिखित के मान निकालिए-
`int ((1 + cosx))/(x + sinx) "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(1 + cos x)`
निम्नलिखित के मान निकालिए-
`int tan^2x sec^4 x"d"x`
निम्नलिखित के मान निकालिए-
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(1 + sinx)"d"x`
निम्नलिखित के मान निकालिए-
`int x/sqrt(x + 1)"d"x` (संकेत: `sqrtx` = z रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(("a" + x)/("a" - x)) "d"x`
निम्नलिखित के मान निकालिए-
`int x^(1/2)/(1 + x^(3/4)) "d"x` (संकेत: `sqrt(x)` = z4 रखिए)
निम्नलिखित के मान निकालिए-
`int sqrt(1 + x^2)/x^4 "d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/sqrt(16 - 9x^2)`
निम्नलिखित के मान निकालिए-
`int "dt"/sqrt(3"t" - 2"t"^2)`
निम्नलिखित के मान निकालिए-
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(5 - 2x + x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int x/(x^4 - 1) "d"x`
निम्नलिखित के मान निकालिए-
`int x^2/(1 - x^4) "d"x` [x2 = t रखिए]
निम्नलिखित के मान निकालिए-
`int sqrt(2"a"x - x^2) "d"x`
निम्नलिखित के मान निकालिए-
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
निम्नलिखित के मान निकालिए-
`int ((cos 5x + cos 4x))/(1 - 2cos 3x)"d"x`
निम्नलिखित के मान निकालिए-
`int (sin^6 x + cos^6 x)/(sin^2 x cos^2 x)"d"x`
निम्नलिखित के मान निकालिए-
`int sqrt(x)/sqrt("a"^3 - x^3)"d"x`
निम्नलिखित के मान निकालिए-
`int (cos x - cos 2x)/ (1 - cos x)"d"x`
निम्नलिखित के मान निकालिए-
`int ("d"x)/(xsqrt(x^4 - 1))` (संकेत: x2 = sec `theta` रखिए)
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 (x^2 + 3)"d"x`
निम्नलिखित का योग की सीमा के रूप में मान निकालिए-
`int_0^2 "e"^x "d"x`
निम्नलिखित का मान निकालिए-
`int_0^1 ("d"x)/("e"^x + "e"^-x`
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) (tan x "d"x)/(1 + "m"^2 tan^2 x`
निम्नलिखित का मान निकालिए-
`int_1^2 ("d"x)/sqrt((x -1) (2 -x))`
निम्नलिखित का मान निकालिए-
`int_0^1 (x"d"x)/sqrt(1 + x^2`
निम्नलिखित का मान निकालिए-
`int_0^x xsin x cos^2 x"d"x`
निम्नलिखित का मान निकालिए-
`int _0^(1/2) ("d"x)/((1 + x^2) sqrt(1 - x^2))` (संकेत: x sinθ रखिए)
दीर्घ उत्तरीय
निम्नलिखित का मान निकालिए-
`int (x^2"d"x)/(x^4 - x^2 - 12)`
निम्नलिखित का मान निकालिए-
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2)) `
निम्नलिखित का मान निकालिए-
`int_"0"^pi (x"d"x)/(1 + sin x)`
निम्नलिखित का मान निकालिए-
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
निम्नलिखित का मान निकालिए-
`int sin^-1 sqrt(x/("a" + x)) "d"x` (संकेत: x = a tan2θ रखिए)
निम्नलिखित का मान निकालिए-
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
निम्नलिखित का मान निकालिए-
`int "e"^(-3x) cos^3x "d"x`
निम्नलिखित का मान निकालिए-
`int sqrt(tanx) "d"x` (संकेत: tanx = t2 रखिए)
निम्नलिखित का मान निकालिए-
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (संकेत: अंश और हर को cos4x से भाग दीजिए)
निम्नलिखित का मान निकालिए-
`int_0^1 x log(1 + 2x) "d"x`
निम्नलिखित का मान निकालिए-
`int_0^pi x log sin x "d"x`
निम्नलिखित का मान निकालिए-
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
उद्देश्यात्मक प्रश्न 48 से 58 तक
`int (cos2x - cos 2theta)/(cos x - costheta)"d"x` बराबर है
2(sinx + xcosθ) + C
2(sinx – xcosθ) + C
2(sinx + 2xcosθ) + C
2(sinx – 2x cosθ) + C
`("d"x)/(sin (x - "a") sin (x - "b"))` बराबर है
`sin ("b" - "a") log |(sin(x - "b"))/(sin(x - "a"))| + "C"`
`"cosec" ("b" - "a") log |(sin(x - "a"))/(sin(x - "b"))| + "C"`
`"cosec" ("b" - "a") log |(sin(x - "b"))/(sin(x - "a"))| + "C"`
`sin ("b" - "a") log |(sin(x - "a"))/(sin(x - "b"))| + "C"`
`int tan^-1 sqrtx "d"x` बराबर है
`(x + 1) tan^-1sqrtx – sqrtx + "C"`
`xtan^-1 sqrtx - sqrtx + "C"`
`sqrtx - x tan^-1 sqrtx + "C"`
`sqrtx - (x + 1) tan^-1 sqrtx + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` बराबर है
`"e"^x/(1 + x^2) +"C"`
`(-"e"^x)/(1 + x^2) +"C"`
`e^x/(1 + x^2)^2 + "C"`
`(-"e"^x)/(1 + x^2)^2 + "C"`
`int (x^9 "d"x)/(4x^2 + 1)^6` बराबर है
`1/(5x)(4 + 1/x^2)^-5 + "C"`
`1/5(4 + 1/x^2)^-5 + "C"`
`1/(10x)(1/x^2 +4)^-5 + "C"`
`1/(10)(1/x^2 +4)^-5 + "C"`
यदि `int ("d"x)/((x + 2) (x^2 + 1))= "a" log |1 + x^2| + "b" tan^-1x + 1/5 log |x + 2| + "C"` है, तो ______
a = `(-1)/10`, b = `(-2)/5`
a = `1/10`, b = `- 2/5`
a = `(-1)/10`, b = `2/5`
a = `1/10`, b = `2/5`
`int x^3/(x + 1)` बराबर है
`x + x^2/2 + x^3/3 - log|1 - x| + "C"`
`x + x^2/2 - x^3/3 - log|1 - x| + "C"`
`x - x^2/2 - x^3/3 - log|1 + x| + "C"`
`x - x^2/2 + x^3/3 - log|1 + x| + "C"`
`int (x + sinx)/(1 + cosx) "d"x` बराबर है
log |1 + cosx| + C
log |x + sinx| + C
`x - tan x/2 + "C"`
`x.tan x/2 + "C"`
यदि `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"` है, तो ______
a = `1/3`, b = 1
a = `(-1)/3`, b = 1
a = `(-1)/3`, b = –1
a = `1/3`, b = –1
`int_((-pi)/4)^(pi/4) ("d"x)/(1 + cos2x)` बराबर है
1
2
3
4
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` बराबर है
`2sqrt(2)`
`2(sqrt(2) + 1)`
2
`2(sqrt(2) - 1)`
59 से 63 तक रिक्त स्थानों की पूर्ति कीजिए।
`int_0^(pi/2) cos x "e"^(sinx) "d"x` के = ______
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
यदि `int_0^"a" 1/(1 + 4x^2)"d"x = pi/8` है, तो a = ______
`int sinx/(3 + 4cos^2x) "d"x` = ______.
`int_-pi^pi sin^3x cos^2x "d"x` का मान ______.
Chapter 7: समाकल
![NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 7 - समाकल NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 7 - समाकल - Shaalaa.com](/images/mathatics-exemplar-class-12-ganit-eksemplr-12-vin-kksaa_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 7 - समाकल
NCERT solutions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 7 (समाकल) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] solutions in a manner that help students grasp basic concepts better and faster.
Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.
Concepts covered in Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] chapter 7 समाकल are समाकलन, समाकलन को अवकलन के व्युत्क्रम प्रक्रम के रूप में, अनिश्चित समाकलनों के कुछ गुणधर्म, समाकलन की विधियाँ, प्रतिस्थापन द्वारा समाकलन, त्रिकोणमितीय सर्व-समिकाओं के उपयोग द्वारा समाकलन, कुछ विशिष्ट फलनों के समाकलन, आंशिक भिन्नों द्वारा समाकलन, खंडशः समाकलन, निश्चित समाकलन, अनिश्चित समाकलन का ज्यामितीय निरूपण, अवकलन एवं समाकलन की तुलना, योगफल की सीमा के रूप में निश्चित समाकलन, कलन की आधारभूत प्रमेय, प्रतिस्थापन द्वारा निश्चित समाकलनों का मान ज्ञात करना, निश्चित समाकलनों के कुछ गुणधर्म.
Using NCERT Class 12 [१२ वीं कक्षा] solutions समाकल exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in NCERT Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 12 [१२ वीं कक्षा] prefer NCERT Textbook Solutions to score more in exam.
Get the free view of chapter 7 समाकल Class 12 [१२ वीं कक्षा] extra questions for Mathematics Exemplar Class 12 [गणित एक्सेम्पलर १२ वीं कक्षा] and can use Shaalaa.com to keep it handy for your exam preparation