Chapters
Chapter 2: बहुपद
Chapter 3: निर्देशांक ज्यामिति
Chapter 4: दो चरों वाले रैखिक समीकरण
Chapter 5: युक्लिड के ज्यामिति का परिचय
Chapter 6: रेखाएँ और कोण
Chapter 7: त्रिभुज
Chapter 8: चतुर्भुज
Chapter 9: समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल
Chapter 10: वृत्त
Chapter 11: रचनाएँ
Chapter 12: हीरोन सूत्र
Chapter 13: पृष्ठीय क्षेत्रफल एवं आयतन
Chapter 14: सांख्यिकी
Chapter 15: प्रायिकता
![NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] chapter 9 - समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] chapter 9 - समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल - Shaalaa.com](/images/mathatics-class-9-ganit-kksaa-9-vin_6:f6a6f5e2119741b994bba931e762ec3e.jpg)
Chapter 9: समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल
NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] Chapter 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल प्रश्नावली 9.1 [Page 187]
निम्नलिखित में से कौन सी आकृति एक ही आधार पर और समान समांतर रेखाओं के बीच स्थित है? ऐसी स्थिति में उभयनिष्ठ आधार और दो समांतर रेखाएँ लिखिए।
NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] Chapter 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल प्रश्नावली 9.2 [Page 192]
दी गई आकृति में, ABCD एक समांतर चतुर्भुज है, AE ⊥ DC और CF ⊥ AD है। यदि AB = 16 सेमी, AE = 8 सेमी और CF = 10 सेमी है, तो AD ज्ञात कीजिए।
यदि E, F, G और H क्रमशः एक समांतर चतुर्भुज ABCD की भुजाओं के मध्य-बिंदु हैं, तो दर्शाइए कि ar (EFGH) = `1/2`ar (ABCD) हैं
P और Q एक समांतर चतुर्भुज ABCD की भुजाओं DC और AD पर स्थित कोई दो बिंदु हैं। दर्शाइए कि ar (APB) = ar (BQC) है।
दी गई आकृति में, P एक समांतर चतुर्भुज ABCD के अभ्यंतर में स्थित कोई बिंदु है। वो दिखाओ
(i) ar (APB) + ar (PCD) = `1/2`ar (ABCD)
(ii) ar (APD) + ar (PBC) = ar (APB) + ar (PCD)
[संकेत: के माध्यम से। P, AB के समांतर एक रेखा खींचिए]
दी गई आकृति में, PQRS और ABRS समांतर चतुर्भुज हैं और X भुजा BR पर स्थित कोई बिंदु है। दर्शाइए कि
(i) ar(PQRS) = ar(ABRS)
(ii) ar(AXS) = `1/2` ar (PQRS)
एक किसान के पास समांतर चतुर्भुज PQRS के रूप में एक खेत था। उसने RS पर कोई बिंदु A लिया और उसे बिंदु P और Q से मिला दिया। क्षेत्र को कितने भागों में विभाजित किया गया है? इन भागों के आकार क्या हैं? किसान गेहूँ और दालों को खेत के बराबर भागों में अलग-अलग बोना चाहता है। उसे कैसे करना चाहिए?
NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] Chapter 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल प्रश्नावली 9.3 [Pages 195 - 198]
दी गई आकृति में, ΔABC की माध्यिका AD पर स्थित E कोई बिंदु है। दिखाएँ कि ar (ABE) = ar (ACE) है।
एक त्रिभुज ΔABC में, E माध्यिका AD का मध्य-बिंदु है। दर्शाइए कि ar (BED) = `1/4`ar (ABC) है।
दर्शाइए कि समांतर चतुर्भुज के दोनों विकर्ण उसे बराबर क्षेत्रफलों वाले चार त्रिभुजों में बाँटते हैं।
ABC और ABD एक ही आधार AB पर बने दो त्रिभुज हैं | यदि रेखाखंड CD रेखाखंड AB से बिंदु O पर समद्विभाजित होता है, तो दर्शाइए कि ar(ABC) = ar(ABD) है
D, E और F क्रमशः ΔABC की भुजाओं BC, CA और AB के मध्य-बिंदु हैं। वो दिखाओ
(i) BDEF एक समांतर चतुर्भुज है।
(ii) ar (DEF) = `1/4`ar (ABC)
(iii) ar (BDEF) = `1/2`ar (ABC)
चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि OB = OD है | यदि AB = CD है, तो दर्शाइए की
(i) ar (DOC) = ar (AOB)
(ii) ar (DCB) = ar (ACB)
(iii) DA || CB या ABCD एक समांतर चतुर्भुज है |
[संकेत: D और B से AC पर लंब खींचिए।]
बिंदु D और E क्रमश: ΔABC कि भुजाओं AB और AC पर इस प्रकार स्थित हैं कि ar(DBC) = ar(EBC) है दर्शाइए कि DE || BC है |
XY त्रिभुज ABC की भुजा BC के समांतर एक रेखा है | यदि BE || AC और CF || AB रेखा XY से क्रमश: E और F पर मिलती है, तो दर्शाइए कि:
ar(ABE) = ar(ACF)
समान्तर चतुर्भुज ABCD की एक भुजा AB को एक बिंदु P तक बढाया गया है | A से होकर CP के समांतर खिंची गई रेखा बढाई गई CB को Q पर मिलती है और फिर समांतर चतुर्भुज PBQR को पूरा किया गया है | दर्शाइए कि ar(ABCD) = ar(PBQR) है |
[संकेत: AC और PQ को मिलाइए अब ar(ACQ) और ar(APQ) कि तुलना कीजिये]
एक समलंब ABCD, जिसमें AB || DC हैं, के विकर्ण AC और BD परस्पर O पर प्रतिच्छेद करते हैं | दर्शाइए कि ar(AOD) = ar(BOC) है |
ABCDE एक पंचभुज है| B से होकर AC के समांतर खिंची गई रेखा बढाई गई DC को F पर मिलती है | दर्शाइए कि
(i) ar(ACB) = ar(ACF)
(ii) ar(AEDF) = ar(ABCDE)
गाँव के एक निवासी इतवारी के पास एक चतुर्भुजाकार भूखंड था। उस गाँव की ग्राम पंचायत ने उसके भूखंड के एक कोने से उसका कुछ भाग लेने का निर्णय लिया ताकि वहाँ एक स्वास्थ्य केन्द्र का निर्माण कराया जा सके। इतवारी इस प्रस्ताव को इस प्रतिबन्ध् के साथ स्वीकार कर लेता है कि उसे इस भाग के बदले उसी भूखंड के संलग्न एक भाग ऐसा दे दिया जाए कि उसका भूखंड त्रिभुजाकार हो जाए। स्पष्ट कीजिए कि इस प्रस्ताव को किस प्रकार कार्यान्वित किया जा सकता है।
ABCD एक समलंब है, जिसमें AB || DC है और AC के समांतर एक रेखा AB को X पर और BC को Y पर प्रतिच्छेद करती है | सिद्ध कीजिए कि ar (ADX) = ar (ACY) है |
[संकेत : CX को मिलाइए]
दी गई आकृति में, AP || BQ || CR है | सिद्ध कीजिए कि ar(AQC) = ar(PBR) है |
चतुर्भुज ABCD के विकर्ण AC और BD परस्पर बिंदु O पर इस प्रकार प्रतिच्छेद करते हैं कि ar (AOD) = ar (BOC) है सिद्ध कीजिए कि ABCD एक समलंब है |
दी गई आकृति में, ar(DRC) = ar(DPC) है और ar(BDP) = ar(ARC) है | दर्शाइए कि दोनों चतुर्भुज ABCD और DCPR समलंब है |
NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] Chapter 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल प्रश्नावली 9.4 (ऐच्छिक) [Pages 198 - 200]
समांतर चतुर्भुज ABCD और आयत ABEF एक ही आधार पर स्थित हैं और उनके क्षेत्रफल बराबर हैं। दर्शाइए की समांतर चतुर्भुज का परिमाप आयत के परिमाप से अधिक है।
आकृति में, भुजा BC पर दो बिंदु D और E इस प्रकार स्थित हैं कि BD = DE = EC है। दर्शाइए कि ar (ABD) = ar (ADE) = ar (AEC) है।
क्या आप इस प्रश्न का उत्तर दे सकते हैं कि आपने इस अध्याय के 'परिचय' में छोड़ दिया है कि "क्या बुधिया के खेत को वास्तव में बराबर क्षेत्रफल के तीन भागों में बांटा गया है"?
[टिप्पणी: ध्यान दें कि BD = DE = EC लेने पर त्रिभुज ABC को बराबर क्षेत्रफलों वाले तीन त्रिभुज ABD, ADE और AEC में विभाजित किया जाता है। इसी तरह, BC को n समान भागों में विभाजित करके और इस प्रकार प्राप्त विभाजन बिंदुओं को BC के विपरीत शीर्ष से जोड़कर, आप ΔABC को समान क्षेत्रफल वाले n त्रिभुजों में विभाजित कर सकते हैं।]
आकृति में, ABCD, DCFE और ABFE समांतर चतुर्भुज हैं। दर्शाइए कि ar (ADE) = ar (BCF) है।
आकृति में, ABCD एक समांतर चतुर्भुज है और BC को एक बिंदु Q तक इस प्रकार बढ़ाया गया है कि AD = CQ है। यदि AQ, DC को P पर काटती है, तो दर्शाइए कि ar(BPC) = ax(DPQ)
[संकेत AC को मिलाइए।]
आकृति में, ABC और BDE दो समबाहु त्रिभुज इस प्रकार हैं कि D, भुजा BC का मध्य-बिंदु है। यदि AE भुजा BC को F पर प्रतिच्छेद करती है, तो दर्शाइए कि
(i) ar (BDE) = `1/4` ar (ABC)
(ii) ar (BDE) = `1/2` ar (BAE)
(iii) ar (ABC) = 2 ar (BEC)
(iv) ar (BFE) = ar (AFD)
(v) ar (BFE) = 2 ar (FED)
(vi) ar (FED) = `1/8`ar (AFC)
[संकेत : EC और AD को मिलाइए। दिखाओ कि BE || AC and DE || AB, आदि]
चतुर्भुज ABCD के विकर्ण AC और BD एक दूसरे को P पर काटते हैं। दर्शाइए कि ar (APB) × ar (CPD) = ar (APD) × ar (BPC) है।
[संकेत : A और C से BD पर लंब खींचिए।]
P और Q क्रमशः त्रिभुज ABC की भुजाओं AB और BC के मध्य-बिंदु हैं और R, रेखाखंड AP का मध्य-बिंदु है, दर्शाइए कि
(i) ar(PRQ) = `1/2` ar(ARC)
(ii) ar(RQC) = `3/8` ar(ABC)
(iii) ar(PBQ) = ar(ARC)
आकृति में, ABC एक समकोण त्रिभुज है जिसका कोण A समकोण है। BCED, ACFG और ABMN क्रमशः BC, CA और AB भुजाओं पर वर्ग हैं। रेखा खंड AX ⊥ DE, भुजा BC से Y पर मिलता है। दर्शाइए कि:
(i) ΔMBC ≅ ΔABD
(ii) ar (BYXD) = 2 ar(MBC)
(iii) ar (BYXD) = ar(ABMN)
(iv) ΔFCB ≅ ΔACE
(v) ar(CYXE) = 2 ar(FCB)
(vi) ar (CYXE) = ar(ACFG)
(vii) ar (BCED) = ar(ABMN) + ar(ACFG)
नोट: परिणाम (vii) पाइथागोरस का प्रसिद्ध प्रमेय है। आप कक्षा X में इस प्रमेय के सरल प्रमाण के बारे में जानेंगे।
Chapter 9: समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल
![NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] chapter 9 - समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] chapter 9 - समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल - Shaalaa.com](/images/mathatics-class-9-ganit-kksaa-9-vin_6:f6a6f5e2119741b994bba931e762ec3e.jpg)
NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] chapter 9 - समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल
NCERT solutions for Mathematics Class 9 [गणित कक्षा ९ वीं] chapter 9 (समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Mathematics Class 9 [गणित कक्षा ९ वीं] solutions in a manner that help students grasp basic concepts better and faster.
Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.
Concepts covered in Mathematics Class 9 [गणित कक्षा ९ वीं] chapter 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल are समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल, एक ही आधार पर और एक ही समांतर रेखाओं के बीच आकृतियाँ, एक ही आधार और एक ही समांतर रेखाओं के बीच समांतर चतुर्भुज, एक ही आधार और एक ही समांतर रेखाओं के बीच स्थित त्रिभुज.
Using NCERT Class 9 [९ वीं कक्षा] solutions समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in NCERT Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 9 [९ वीं कक्षा] prefer NCERT Textbook Solutions to score more in exam.
Get the free view of chapter 9 समांतर चतुर्भुज और त्रिभुजों के क्षेत्रफल Class 9 [९ वीं कक्षा] extra questions for Mathematics Class 9 [गणित कक्षा ९ वीं] and can use Shaalaa.com to keep it handy for your exam preparation