Chapters
Chapter 2: संबंध एवं फलन
Chapter 3: त्रिकोणमितीय फलन
Chapter 4: गणितीय आगमन का सिद्धांत
Chapter 5: सम्मिश्र संख्याएँ और द्विघातीय समीकरण
Chapter 6: रैखिक असमिकाएँ
Chapter 7: क्रमचय और संचय
Chapter 8: द्विपद प्रमेय
Chapter 9: अनुक्रम तथा श्रेणी
Chapter 10: सरल रेखाएँ
Chapter 11: शंकु परिच्छेद
Chapter 12: त्रिविमीय ज्यामिति का परिचय
Chapter 13: सीमा और अवकलज
Chapter 14: गणितीय विवेचन
Chapter 15: सांख्यिकी
Chapter 16: प्रायिकता
![NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] chapter 10 - सरल रेखाएँ NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] chapter 10 - सरल रेखाएँ - Shaalaa.com](/images/mathatics-class-11-ganit-kksaa-11-vin_6:77c57ab370fc41eba72931d345de05e2.jpg)
Chapter 10: सरल रेखाएँ
NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] Chapter 10 सरल रेखाएँ प्रश्नावली 10.1 [Pages 225 - 226]
कार्तीय तल में एक चतुर्भुज खींचिए जिसके शीर्ष (−4, 5), (0, 7), (5, –5) और (−4, –2) हैं। इसका क्षेत्रफल भी ज्ञात कीजिए।
2a भुजा के समबाहु त्रिभुज का आधार y-अक्ष के अनुदिश इस प्रकार है कि आधार का मध्य बिंदु मूल बिंदु पर है। त्रिभुज के शीर्ष ज्ञात कीजिए।
P(x1, y1) और Q(x2, Y2) के बीच की दूरी ज्ञात कीजिए जब:
- PQ, y-अक्ष के समांतर है।
- PQ, x-अक्ष के समांतर है।
x-अक्ष पर एक बिंदु ज्ञात कीजिए जो (7, 6) और (3, 4) बिंदुओं से समान दूरी पर है।
रेखा की ढाल ज्ञात कीजिए जो मूल बिंदु और P(0, −4) तथा B(8, 0) बिंदुओं को मिलाने वाले रेखाखंड के मध्य बिंदु से जाती है।
पाइथागोरस प्रमेय के प्रयोग बिना दिखलाइए कि बिंदु (4, 4), (3, 5) और (–1, –1) एक समकोण त्रिभुज के शीर्ष हैं।
उस रेखा का समीकरण ज्ञात कीजिए जो y-अक्ष की धन दिशा से वामावर्त्त मापा गया 30° का कोण बनाती है।
x का वह मान ज्ञात कीजिए जिसके लिए बिंदु (x, −1), (2, 1) और (4, 5) संरेख हैं।
दूरी सूत्र का प्रयोग किए बिना दिखलाइए कि बिंदु (−2, −1), (4, 0), (3, 3) और (−3, 2) एक समांतर चतुर्भुज के शीर्ष हैं।
x-अक्ष और (3, – 1) और (4, – 2) बिंदुओं को मिलाने वाली रेखा के बीच का कोण ज्ञात कीजिए।
एक रेखा की ढाल दूसरी रेखा की ढाल का दुगुना है। यदि दोनों के बीच के कोण की स्पर्शज्या (tangent) `1/3` है तो रेखाओं की ढाल ज्ञात कीजिए।
एक रेखा (x1, y1) और (h, k) से जाती है। यदि रेखा की ढाल m है तो दिखाइए k – y1 = m(h – x1)
यदि तीन बिंदु (h, 0), (a, b) और (0, k) एक रेखा पर हैं तो दिखाइए कि `"a"/"h" + "b"/"k" = 1`
जनसंख्या और वर्ष के निम्नलिखित लेखाचित्र पर विचार कीजिए। रेखा AB की ढाल ज्ञात कीजिए और इसके प्रयोग से बताइए कि वर्ष 2010 में जनसंख्या कितनी होगी?
NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] Chapter 10 सरल रेखाएँ प्रश्नावली 10.2 [Pages 234 - 235]
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंधों को संतुष्ट करता है:
x-अक्ष और y-अक्ष के समीकरण लिखिए।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंधों को संतुष्ट करता है:
ढाल `1/2` और बिंदु (−4, 3) से जाने वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंधों को संतुष्ट करता है:
बिंदु (0, 0) से जाने वाली और ढाल m वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंधों को संतुष्ट करता है:
बिंदु `(2, 2sqrt3)` से जाने वाली और x-अक्ष से 75° के कोण पर झुकी हुई।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंधों को संतुष्ट करता है:
मूल बिंदु के बाईं ओर x-अक्ष को 3 इकाई की दूरी पर प्रतिच्छेद करने तथा ढाल – 2 वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंधों को संतुष्ट करता है:
मूल बिंदु से ऊपर y-अक्ष को 2 इकाई की दूरी पर प्रतिच्छेद करने वाली और x-अक्ष की धन दिशा के साथ 30° का कोण बनाने वाली।
निम्नलिखित रेखा का समीकरण ज्ञात कीजिए जो दिये गये प्रतिबंधों को संतुष्ट करता है:
बिंदुओं (−1, 1) और (2, –4) से जाते हुए।
उस रेखा का समीकरण ज्ञात कीजिए जिसकी मूल बिंदु से लांबिक दूरी 5 इकाई और लंब, धन x-अक्ष से 30° का कोण बनाती है।
∆PQR के शीर्ष P(2, 1), Q(−2, 3) और R(4, 5) हैं। शीर्ष R से जाने वाली माध्यिका का समीकरण ज्ञात कीजिए।
(−3, 5) से होकर जाने वाली और बिंदु (2, 5) और (−3, 6) से जाने वाली रेखा पर लंब रेखा का समीकरण ज्ञात कीजिए।
एक रेखा (1, 0) तथा (2, 3) बिंदुओं को मिलाने वाली रेखा खंड पर लंब है तथा उसको 1 : n के अनुपात में विभाजित करती है। रेखा का समीकरण ज्ञात कीजिए।
एक रेखा का समीकरण ज्ञात कीजिए जो निर्देशांकों से समान अंत: खंड काटती है और बिंदु (2, 3) से जाती है।
बिंदु (2, 2) से जाने वाली रेखा का समीकरण ज्ञात कीजिए जिसके द्वारा अक्षों से कटे अंतः खंडों का योग 9 है।
बिंदु (0, 2) से जाने वाली और धन x-अक्ष से `(2π)/3` के कोण बनाने वाली रेखा का समीकरण ज्ञात कीजिए। इसके समांतर और y-अक्ष को मूल बिंदु से 2 इकाई नीचे की दूरी पर प्रतिच्छेद करती हुई रेखा का समीकरण भी ज्ञात कीजिए।
मूल बिंदु से किसी रेखा पर डाला गया लंब रेखा से बिंदु (−2, 9) पर मिलता है, रेखा का समीकरण ज्ञात कीजिए।
ताँबे की छड़ की लंबाई L (सेमी में) सेल्सियस ताप C का रैखिक फलन है। एक प्रयोग में यदि L = 124.942 जब C = 20 और L = 125.134 जब C = 110 हो, तो L को C के पदों में व्यक्त कीजिए।
किसी दूध भंडार का स्वामी प्रति सप्ताह 980 लिटर दूध, 14 रु. प्रति लिटर के भाव से और 1220 लिटर दूध 16 रु. प्रति लिटर के भाव से बेच सकता है। विक्रय मूल्य तथा मांग के मध्य के संबंध को रैखिक मानते हुए यह ज्ञात कीजिए कि प्रति सप्ताह वह कितना दूध 17 रु. प्रति लिटर के भाव से बेच सकता है?
अक्षों के बीच रेखाखंड का मध्य बिंदु P(a, b) है। दिखाइए कि रेखा का समीकरण `"x"/"a" + "y"/"b" = 2` हैं।
अक्षों के बीच रेखाखंड को बिंदु R(h, k), 1 : 2 के अनुपात में विभक्त करता है। रेखा का समीकरण ज्ञात कीजिए।
रेखा के समीकरण की संकल्पना का प्रयोग करते हुए सिद्ध कीजिए कि तीन बिंदु (3, 0), (−2, −2) और (8, 2) संरेख हैं।
NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] Chapter 10 सरल रेखाएँ प्रश्नावली 10.3 [Pages 242 - 243]
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
x + 7y = 0
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
6x + 3y – 5 = 0
निम्नलिखित समीकरण को ढाल-अंतः खंड रूप में रूपांतरित कीजिए और उनके ढाल तथा y-अंतः खंड ज्ञात कीजिए:
y = 0
निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:
3x + 2y – 12 = 0
निम्नलिखित समीकरण को अंतः खंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतः खंड ज्ञात कीजिए:
4x – 3y = 6
निम्नलिखित समीकरण को अंतःखंड रूप में रूपांतरित कीजिए और अक्षों पर इनके द्वारा काटे गए अंतःखंड ज्ञात कीजिए:
3y + 2 = 0
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
`x - sqrt3y + 8 = 0`
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
y – 2 = 0
निम्नलिखित समीकरण को लंब रूप में रूपांतरित कीजिए। उनकी मूल बिंदु से लांबिक दूरियाँ और लंब तथा धन x-अक्ष के बीच का कोण ज्ञात कीजिए:
x – y = 4
बिंदु (−1, 1) की रेखा 12(x + 6) = 5(y – 2) से दूरी ज्ञात कीजिए।
x-अक्ष पर बिंदुओं को ज्ञात कीजिए जिनकी रेखा `"x"/3 + "y"/4 = 1` से दूरियाँ 4 इकाई हैं।
समांतर रेखाओं के बीच की दूरी ज्ञात कीजिए:
15x + 8y – 34 = 0 और 15x + 8y + 31 = 0
समांतर रेखाओं के बीच की दूरी ज्ञात कीजिए:
l(x +y) + p = 0 और l(x + y) – r = 0
रेखा 3x – 4y + 2 = 0 के समांतर और बिंदु (−2, 3) से जाने वाली रेखा का समीकरण ज्ञात कीजिए।
रेखा x – 7y + 5 = 0 पर लंब और x-अंत: खंड 3 वाली रेखा का समीकरण ज्ञात कीजिए।
रेखाओं `sqrt3"x" + "y" = 1` और `"x" + sqrt3"y" = 1` के बीच का कोण ज्ञात कीजिए।
बिंदुओं (h, 3) और (4, 1) से जाने वाली रेखा, रेखा 7x – 9y – 19 = 0 को समकोण पर प्रतिच्छेद करती है। h का मान ज्ञात कीजिए।
सिद्ध कीजिए कि बिंदु (x1, y1) से जाने वाली और रेखा Ax + By + C = 0 के समांतर रेखा का समीकरण A(x – x1) + B(y – y1) = 0 है।
बिंदु (2, 3) से जाने वाली दो रेखाएँ परस्पर 60° के कोण पर प्रतिच्छेद करती हैं। यदि एक रेखा की ढाल 2 है तो दूसरी रेखा का समीकरण ज्ञात कीजिए।
बिंदुओं (3, 4) और (−1, 2) को मिलाने वाली रेखाखंड के लंब समद्विभाजक रेखा का समीकरण ज्ञात कीजिए।
बिंदु (−1, 3) से रेखा 3x – 4y – 16 = 0 पर डाले गये लंबपाद के निर्देशांक ज्ञात कीजिए।
मूल बिंदु से रेखा y = mx + c पर डाला गया लंब रेखा से बिंदु (−1, 2) पर मिलता है। m और … c के मान ज्ञात कीजिए।
यदि p और q क्रमशः मूल बिंदु से रेखाओं x cos θ – y sin θ = k cos 2θ और x sec θ +y cosec θ = k पर लंब की लंबाइयाँ हैं तो सिद्ध कीजिए कि p2 + 4q2 = k2
शीर्षों A(2, 3), B(4, –1) और C(1, 2) वाले त्रिभुज ABC के शीर्ष A से उसकी संमुख भुजा पर लंब डाला गया है। लंब की लंबाई तथा समीकरण ज्ञात कीजिए।
यदि p मूल बिंदु से उस रेखा पर डाले लंब की लंबाई हो जिस पर अक्षों पर कटे अंत: खंड a और b हों, तो दिखाइए कि `1/"p"^2 = 1/"a"^2 + 1/"b"^2`
NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] Chapter 10 सरल रेखाएँ अध्याय 10 पर विविध प्रश्नावली [Pages 248 - 249]
k के मान । ज्ञात कीजिए जबकि रेखा (k – 3)x – (4 – k2)y + k2 – 7k + 6 = 0
- x-अक्ष के समांतर है।
- y-अक्ष के समांतर है।
- मूल बिंदु से जाती है।
θ और p के मान ज्ञात कीजिए यदि समीकरण x cos θ + y sin θ = p रेखा `sqrt3`x + y + 2 = 0 का लंब रूप है।
उन रेखाओं के समीकरण ज्ञात कीजिए जिनके अक्षों से कटे अंतः खंडों का योग और गुणनफल क्रमशः 1 और –6 है।
y-अक्ष पर कौन से बिंदु ऐसे हैं, जिनकी रेखा `"x"/3 + "y"/4 = 1` से दूरी 4 इकाई है।
मूल बिंदु से बिंदुओं (cos θ, sin θ) और (cos ϕ, sin ϕ) को मिलाने वाली रेखा की लांबिक दूरी ज्ञात कीजिए।
रेखाओं x – 7y + 5 = 0 और 3x + y = 0 के प्रतिच्छेद बिंदु से खींची गई और y-अक्ष के समांतर रेखा का समीकरण ज्ञात कीजिए।
रेखा `"x"/4 + "y"/6 = 1` पर लंब उस बिंदु से खींची गई रेखा का समीकरण ज्ञात कीजिए जहाँ यह रेखा y-अक्ष से मिलती है।
रेखाओं y – x = 0, x + y = 0, और x – k = 0 से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
p का मान ज्ञात कीजिए जिससे तीन रेखाएँ 3x + y – 2 = 0, px + 2y – 3 = 0 और 2x – y – 3 = 0 एक बिंदु पर प्रतिच्छेद करें।
यदि तीन रेखाएँ जिनके समीकरण y = m1x + c1, y = m2x + c2 और y = m3x + c3 हैं, संगामी हैं तो दिखाइए कि m1(c2 – c3) + m2(c3 – c1) + m3(c1 – c2) = 0
बिंदु (3, 2) से जाने वाली उस रेखा का समीकरण ज्ञात कीजिए जो रेखा x – 2y = 3 से 45° का कोण बनाती है।
रेखाओं 4x + 7y – 3 = 0 और 2x – 3y + 1 = 0 के प्रतिच्छेद बिंदु से जाने वाली रेखा का समीकरण ज्ञात कीजिए जो अक्षों से समान अंतः खंड बनाती हैं।
दर्शाइए कि मूल बिन्दु से जाने वाली और रेखा y = mx + c से θ कोण बनाने वाली उस रेखा का समीकरण `"y"/"x" = ±("m" + tan θ)/(1 - "m" tan θ)` हैं।
(−1, 1) और (5, 7) को मिलाने वाली रेखाखंड को रेखा x + y = 4 किस अनुपात में विभाजित करती है?
बिंदु (1, 2) से रेखा 4x + 7y + 5 = 0 की 2x – y = 0 के अनुदिश दूरी ज्ञात करो।
बिंदु (−1, 2) से खींची जा सकने वाली उस रेखा की दिशा ज्ञात कीजिए जिसका रेखा x + y = 4 से प्रतिच्छेदन बिंदु दिए बिंदु से 3 इकाई की दूरी पर है।
समकोण त्रिभुज के कर्ण के अंतय बिंदु (1, 3) और (−4, 1) हैं। त्रिभुज के पाद (legs) (समकोणीय भुजाओ) का एक समीकरण ज्ञात कीजिए।
किसी बिंदु के लिए रेखा को दर्पण मानते हुए बिंदु (3, 8) का रेखा x + 3y = 7 में प्रतिबिंब ज्ञात कीजिए।
यदि रेखाएँ y = 3x + 1 और 2y = x + 3, रेखा y = mx + 4, पर समान रूप से आनत हों तो m का मान ज्ञात कीजिए।
यदि एक वर बिंदु P(x, y) की रेखाओं x + y – 5 = 0 और 3x – 2y + 7 = 0 से लांबिक दूरियों का योग सदैव 10 रहे तो दर्शाइए कि P अनिवार्य रूप से एक रेखा पर गमन करता है।
समांतर रखाओं 9x + 6y – 7 = 0 और 3x + 2y + 6 = 0 से समदूरस्थ रेखा का समीकरण ज्ञात कीजिए।
बिंदु (1, 2) से होकर जाने वाली एक प्रकाश किरण x-अक्ष के बिंदु A से परावर्तित होती है और परावर्तित किरण बिंदु (5, 3) से होकर जाती है। A के निर्देशांक ज्ञात कीजिए।
दिखाइए कि `(sqrt("a"^2 - "b"^2), 0)` और `(-sqrt("a"^2 - "b"^2), 0)` बिंदुओं से रेखा `"x"/"a" cos θ + "y"/"b" sin θ = 1` पर खींचे गये लंबों की लंबाइयों का गुणनफल b2 है।
एक व्यक्ति समीकरणों 2x – 3y + 4= 0 और 3x + 4y – 5 = 0 से निरूपित सरल रेखीय पथों के संधि बिंदुओं (junction/crossing) पर खड़ा है और समीकरण 6x – 7y + 8 = 0 से निरूपित पथ पर न्यूनतम समय में पहुँचना चाहता है। उसके द्वारा अनुसरित पथ का समीकरण ज्ञात कीजिए।
Chapter 10: सरल रेखाएँ
![NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] chapter 10 - सरल रेखाएँ NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] chapter 10 - सरल रेखाएँ - Shaalaa.com](/images/mathatics-class-11-ganit-kksaa-11-vin_6:77c57ab370fc41eba72931d345de05e2.jpg)
NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] chapter 10 - सरल रेखाएँ
NCERT solutions for Mathematics Class 11 [गणित कक्षा ११ वीं] chapter 10 (सरल रेखाएँ) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Mathematics Class 11 [गणित कक्षा ११ वीं] solutions in a manner that help students grasp basic concepts better and faster.
Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.
Concepts covered in Mathematics Class 11 [गणित कक्षा ११ वीं] chapter 10 सरल रेखाएँ are एक बिंदु की रेखा से दूरी, सरल रेखाएँ, रेखा की ढाल, रेखा की ढाल, जब उस पर दो बिंदु दिए गए हों, दो रेखाओं के समांतर और परस्पर लंब होने का प्रतिबंध, दो रेखाओं के बीच का कोण, तीन बिंदुओं की संरेखकता, रेखा के समीकरण के विविध रूप, रेखा का व्यापक समीकरण.
Using NCERT Class 11 [११ वीं कक्षा] solutions सरल रेखाएँ exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in NCERT Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 11 [११ वीं कक्षा] prefer NCERT Textbook Solutions to score more in exam.
Get the free view of chapter 10 सरल रेखाएँ Class 11 [११ वीं कक्षा] extra questions for Mathematics Class 11 [गणित कक्षा ११ वीं] and can use Shaalaa.com to keep it handy for your exam preparation