Online Mock Tests
Chapters
Chapter 2: Inverse Trigonometric Functions
Chapter 3: Matrices
Chapter 4: Determinants
Chapter 5: Continuity and Differentiability
Chapter 6: Application of Derivatives
Chapter 7: Integrals
Chapter 8: Application of Integrals
Chapter 9: Differential Equations
Chapter 10: Vector Algebra
Chapter 11: Three Dimensional Geometry
Chapter 12: Linear Programming
Chapter 13: Probability
Solutions for Chapter 7: Integrals
Below listed, you can find solutions for Chapter 7 of CBSE, Karnataka Board PUC NCERT for Class 12 Maths.
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.1 [Page 299]
Find an anti derivative (or integral) of the following functions by the method of inspection.
sin 2x
Find an anti derivative (or integral) of the following functions by the method of inspection.
Cos 3x
Find an anti derivative (or integral) of the following functions by the method of inspection.
`e^(2x)`
Find an anti derivative (or integral) of the following functions by the method of inspection.
(ax + b)2
Find an anti derivative (or integral) of the following functions by the method of inspection
sin 2x – 4 e3x
Find the following integrals ∫(4 e3x + 1) dx
Find the following integrals `intx^2 (1 - 1/x^2)dx`
Find the following integrals ∫(ax + bx + c) dx
Find the following integrals ` int(2x^2 + e^x)dx`
Find the following integrals `int(sqrtx - 1/sqrtx)^2 dx`
Find the following integrals `int (x^3 + 5x^2 -4)/x^2 dx`
Find the following integrals `int (x^3 + 3x + 4)/sqrtx dx`
Find the following integrals `int (x^3 - x^2 + x - 1)/(x - 1) dx`
Find the following integrals ∫(1 – x) `sqrtx` dx
Find the following integrals ∫ x( 3x2 + 2x + 3) dx
Find the following integrals `int(2x- 3cos x +e^x) dx`
Find the following integrals `int(2x^2 - 3sinx + 5sqrtx) dx`
Find the following integrals ∫sec x (sec x + tan x) dx
Find the following integrals `int(sec^2x)/(cosec^2x) dx`
Find the following integrals `int (2 - 3 sinx)/(cos^2 x) dx`
The anti derivative of (sqrtx + 1/ sqrtx) equals
(A) `1/3 x^(1/3) + 2x^(1/2) + C`
(B) `2/3x^(2/3) + 1/2 x^2 + C`
(C) `2/3x^(3/2) + 2x^(1/2) +C`
(D) `3/2 x^(3/2) + 1/2x^(1/2) + C`
if `d/dx f(x) = 4x^3 - 3/x^4` such that f(2) = 0 Then f(x) is
(A) `x^4 + 1/x^3 - 129`
(B)`x^3 + 1/x^4 + 129/8`
(C) `x^4 + 1/x^3 + 129/8`
(D) `x^3 + 1/x^4 - 129/8`
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.2 [Pages 304 - 305]
Integrate the functions `(2x)/(1 + x^2)`
Integrate the functions `(log x)^2/x`
Integrate the functions `1/(x + x log x)`
Integrate the functions sin x ⋅ sin (cos x)
Integrate the functions sin (ax + b) cos (ax + b)
Integrate the functions `sqrt(ax + b)`
Integrate the functions `xsqrt(x + 2)`
Integrate the functions `xsqrt(1+ 2x^2)`
Integrate the functions (4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions `1/(x-sqrtx)`
Integrate the functions `x/(sqrt(x+ 4))`, x > 0
Integrate the functions `x/(sqrt(x+ 4))`, x > 0
Integrate the functions `(x^3 - 1)^(1/3) x^5`
Integrate the functions `x^2/(2+ 3x^3)^3`
Integrate the functions `1/(x(log x)^m), x > 0`
Integrate the functions `x/(9 - 4x^2)`
Integrate the functions `e^(2x+3)`
Integrate the functions `x/(e^(x^2))`
Integrate the functions `e^(tan^(-1)x)/(1+x^2)`
Integrate the functions `(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions `(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions tan2(2x – 3)
Integrate the functions sec2(7 – 4x)
Integrate the functions `(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions `(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions `1/(cos^23 x(1- tan x)^2`
Integrate the functions `cos sqrt(x)/sqrtx`
Integrate the functions `sqrt(sin 2x) cos 2x`
Integrate the functions `cos x /(sqrt(1+sinx))`
Integrate the functions cot x log sin x
Integrate the functions `sin x/(1+ cos x)`
Integrate the functions in `(sin x)/(1+ cos x)^2`
Integrate the functions in `1/(1 + cot x)`
Integrate the functions in `1/(1 - tan x)`
Integrate the functions in `sqrt(tanx)/(sinxcos x)`
Integrate the functions in `(1+ log x)^2/x`
Integrate the functions in `((x+1)(x + logx)^2)/x`
Integrate the functions in `(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Choose the correct answer int `(10x^9 + 10^x log_e 10)/(x^10 + 10^x)` dx equals
(A) 10x – x10 + C
(B) 10x + x10 + C
(C) (10x – x10)–1 + C
(D) log (10x + x10) + C
Choose the correct answer `int (dx)/(sin^2 x cos^2 x)` equals
(A) tan x + cot x + C
(B) tan x – cot x + C
(C) tan x cot x + C
(D) tan x – cot 2x + C
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.3 [Page 307]
Find the integrals of the functions sin2 (2x + 5)
Find the integrals of the functions sin 3x cos 4x
Find the integrals of the functions cos 2x cos 4x cos 6x
Find the integrals of the functions sin3 (2x + 1)
Find the integrals of the functions sin3 x cos3 x
Find the integrals of the functions sin x sin 2x sin 3x
Find the integrals of the functions sin 4x sin 8x
Find the integrals of the functions `(1- cosx)/(1 + cos x)`
Find the integrals of the functions `cos x/(1 + cos x)`
Find the integrals of the functions `sin^4 x`
Find the integrals of the functions cos4 2x
Find the integrals of the functions `(sin^2 x)/(1 + cos x)`
Find the integrals of the functions `(cos 2x - cos 2 alpha)/(cos x - cos alpha)`
Find the integrals of the functions `(cos x - sinx)/(1+sin 2x)`
Find the integrals of the functions tan3 2x sec 2x
Find the integrals of the functions tan4x
Find the integrals of the functions `(sin^3 x + cos^3 x)/(sin^2x cos^2 x)`
Find the integrals of the functions `(cos 2x+ 2sin^2x)/(cos^2 x)`
Find the integrals of the functions `1/(sin xcos^3 x)`
Find the integrals of the functions `(cos 2x)/(cos x + sin x)^2`
Find the integrals of the functions sin−1 (cos x)
Find the integrals of the functions `1/(cos(x - a) cos(x - b))`
Choose the correct answer `int (sin^2x - cos^2 x)/(sin^2 x cos^2 x) dx`
A. tan x + cot x + C
B. tan x + cosec x + C
C. − tan x + cot x + C
D. tan x + sec x + C
Choose the correct answer `int (e^x(1 +x))/cos^2(e^x x) dx`
A. − cot (exx) + C
B. tan (xex) + C
C. tan (ex) + C
D. cot (ex) + C
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.4 [Pages 315 - 316]
Integrate the functions `(3x^2)/(x^6 + 1)`
Integrate the functions `1/sqrt(1+4x^2)`
Integrate the functions `1/sqrt((2-x)^2 + 1)`
Integrate the functions `1/sqrt(9 - 25x^2)`
Integrate the functions `(3x)/(1+ 2x^4)`
Integrate the functions `x^2/(1 - x^6)`
Integrate the functions `(x - 1)/sqrt(x^2 - 1)`
Integrate the functions `x^2/sqrt(x^6 + a^6)`
Integrate the functions `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the functions `1/sqrt(x^2 +2x + 2)`
Integrate the functions `1/sqrt(9x^2 + 6x + 5)`
Integrate the functions `1/sqrt(7 - 6x - x^2)`
Integrate the functions `1/sqrt((x -1)(x - 2))`
Integrate the functions `1/sqrt(8+3x - x^2)`
Integrate the functions `1/sqrt((x - a)(x - b))`
Integrate the functions `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the functions `(x + 2)/sqrt(x^2 -1)`
Integrate the functions `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the functions `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the functions `(x + 2)/sqrt(4x - x^2)`
Integrate the functions `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the functions `(x + 3)/(x^2 - 2x - 5)`
Integrate the functions `(5x + 3)/sqrt(x^2 + 4x + 10)`
Choose the correct answer int `dx/(x^2 + 2x + 2)` equals
A. x tan−1 (x + 1) + C
B. tan− 1 (x + 1) + C
C. (x + 1) tan−1 x + C
D. tan−1 x + C
Choose the correct answer `int dx/sqrt(9x - 4x^2)` equals
(A) `1/9 sin^(-1) ((9x -8)/8) + C`
(B) `1/2 sin^(-1) ((8x -9)/9) + C`
(C) `1/3 sin^(-1) ((9x - 8)/8) + C`
(D) `1/2 sin^(-1) ((9x - 8)/9) + C`
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.5 [Pages 322 - 323]
Integrate the rational functions `x/((x + 1)(x+ 2))`
Integrate the rational functions `1/(x^2 - 9)`
Integrate the rational functions `(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational functions `x/((x-1)(x- 2)(x - 3))`
Integrate the rational functions `(2x)/(x^2 + 3x + 2)`
Integrate the rational functions `(1 - x^2)/(x(1-2x))`
Integrate the rational functions `x/((x^2+1)(x - 1))`
Integrate the rational functions `x/((x -1)^2 (x+ 2))`
Integrate the rational functions `(3x + 5)/(x^3 - x^2 - x + 1)`
Integrate the rational functions `(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational functions `(5x)/((x + 1)(x^2 - 4))`
Integrate the rational functions `(x^2 + x + 1)/(x^2 -1)`
Integrate the rational functions `2/((1-x)(1+x^2))`
Integrate the rational functions `(3x -1)/(x + 2)^2`
Integrate the rational functions `1/(x^4 - 1)`
Integrate the rational functions `1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Integrate the rational functions `(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Integrate the rational functions `((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
Integrate the rational functions `(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational functions `1/(x(x^4 - 1))`
Integrate the rational functions `1/(e^x -1)`[Hint: Put ex = t]
Choose the correct answer `int (xdx)/((x - 1)(x - 2))` equals
A. `log |(x - 1)^2/(x -2)| + C`
B. `log |(x-2)^2/(x -1)| +C`
C. `log|((x- 1)/(x- 2))^2| + C`
D. log|(x - 1)(x - 2)| + C
Choose the correct answer `int (dx)/(x(x^2 + 1))` equal
A. `log |x| - 1/2 log (x^2 + 1) + C`
B. `log |x| + 1/2 log(x^2 + 1) + C`
C. `- log|x| + 1/2 log (x^2 + 1) + C`
D. `1/2 log|x| + log(x^2 + 1)+ C`
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.6 [Pages 327 - 328]
Integrate the functions x sin x
Integrate the functions x sin 3x
Integrate the functions `x^2e^x`
Integrate the functions x logx
Integrate the functions x log 2x
Integrate the functions x2 log x
Integrate the functions x sin– 1x
Integrate the functions x tan–1 x
Integrate the functions x cos–1 x
Integrate the functions (sin–1x)2
Integrate the functions `(x cos^(-1) x)/sqrt(1-x^2)`
Integrate the functions x sec2 x
Integrate the functions tan–1x
Integrate the functions x (log x)2
Integrate the functions (x2 + 1) log x
Integrate the functions ex (sinx + cosx)
Integrate the functions `(xe^x)/(1+x)^2`
Integrate the functions `e^x (1 + sin x)/(1+cos x)`
Integrate the functions `e^x (1/x - 1/x^2)`
Integrate the functions `((x- 3)e^x)/(x - 1)^3`
Integrate the functions e2x sin x
Integrate the functions `sin^(-1) ((2x)/(1+x^2))`
Choose the correct answer `intx^2 e^(x^3) dx` equals
(A) `1/3 e^(x^3) + C`
(B) `1/3 e^(x^2) + C`
(C) `1/2 e^(x^3) +C`
(D) `1/3 e^(x^2) + C`
Choose the correct answer `int e^x sec x (1 + tan x) dx` equals
(A) ex cos x + C
(B) ex sec x + C
(C) ex sin x + C
(D) ex tan x + C
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.7 [Page 330]
Integrate the functions `sqrt(4 - x^2)`
Integrate the functions `sqrt(1- 4x^2)`
Integrate the functions `sqrt(x^2 + 4x + 6)`
Integrate the functions `sqrt(x^2 + 4x +1)`
Integrate the functions `sqrt(1-4x - x^2)`
Integrate the functions `sqrt(x^2 + 4x - 5)`
Integrate the functions `sqrt(1+ 3x - x^2)`
Integrate the functions `sqrt(x^2 + 3x)`
Integrate the functions `sqrt(1+ x^2/9)`
Choose the correct answer `int sqrt(1+ x^2) dx` is equal
(A) `x/2 sqrt(1+ x^2) + 1/2log |(x + sqrt(1+ x^2)) + C|`
(B) `2/3 (1+ x^2)^(3/2) + C`
(C) `2/3x(1 + x^2)^(3/2) + C`
(D) `x^2/2 sqrt(1+x^2) + 1/2 x^2 log|x + sqrt(1+ x^2)|+ C`
Choose the correct answer `int sqrt(1+ x^2) dx` is equal
(A) `x/2 sqrt(1+ x^2) + 1/2log |(x + sqrt(1+ x^2)) + C|`
(B) `2/3 (1+ x^2)^(3/2) + C`
(C) `2/3x(1 + x^2)^(3/2) + C`
(D) `x^2/2 sqrt(1+x^2) + 1/2 x^2 log|x + sqrt(1+ x^2)|+ C`
Choose the correct answer `int sqrt(x^2 - 8x + 7) dx` is equal to
(A) `1/2 (x - 4) sqrt(x^2 - 8x + 7) + 9log |x - 4 + sqrt(x^2 - 8x + 7)| + C`
(B) `1/2( x- 4) sqrt(x^2-8x + 7) + 9log|x + 4 + sqrt(x^2 - 8x + 7)| + C`
(C) `1/2 (x - 4) sqrt(x^2 - 8x + 7) - 3sqrt2 log |x - 4 + sqrt(x^2 - 8x + 7)| + C`
(D) `1/2 (x - 4) sqrt(x^2 - 8x + 7) - 9/2 log |x - 4 + sqrt(x^2 - 8x + 7)| + C`
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.8 [Page 334]
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.9 [Page 338]
Evaluate the definite integrals `int_(-1)^1 (x + 1)dx`
Evaluate the definite integrals `int_2^3 1/x dx`
Evaluate the integrals in using substitution
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the definite integrals `int_1^2 (4x^3 - 5x^2 + 6x + 9)`
Evaluate the definite integrals `int_0^(x/4) sin2xdx`
Evaluate the definite integrals `int_0^(x/2) xos 2x dx`
Evaluate the definite integrals `int_4^5 e^x dx`
Evaluate the definite integrals `int_0^(x/4) tan x dx`
Evaluate the definite integrals `int_(pi/6)^(pi/4) cosec x dx`
Evaluate the definite integrals `int_0^4 dx/sqrt(1-x^2)`
Evaluate the definite integrals `int_0^4 dx/(1+x^2)`
if `f(x) = int_0^pi t sin t dt`, then f' (x) is
A. cos x + x sin x
B. x sin x
C. x cos x
D. sin x + x cos x
Evaluate the definite integrals `int_2^3 dx/(x^2 - 1)`
Evaluate the definite integrals `int_0^(pi/2) cos^2 xdx`
Evaluate the definite integrals `int_2^3 (xdx)/(x^2 + 1)`
Evaluate the definite integrals `int_0^1 (2x + 3)/(5x^2 + 1) dx`
Evaluate the definite integrals `int_0^1 x e^(x^2) dx`
Evaluate the definite integrals `int_1^2 (5x^2)/(x^2 + 4x + 3)`
Evaluate the definite integrals `int_0^(pi/4) (2 sec^2 x + x^3 + 2) dx`
Evaluate the definite integrals `int_0^Pi (sin^2 x/2 - cos^2 x/2) dx`
Evaluate the definite integrals `int_0^2 (6x +3)/(x^2 + 4)` dx
Evaluate the definite integrals `int_0^1 (xe^x + sin (pix)/4)`
Choose the correct answer `int_1^(sqrt3)dx/(1+x^2) ` equals
A. `pi/3`
B. `(2pi)/3`
C. `pi/6`
D. `pi/12`
Choose the correct answer `int_0^(2/3) dx/(4+9x^2)` equals is
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.10 [Page 340]
Evaluate the integrals in using substitution
`int_0^1 x/(x^2 +1)`dx
Evaluate the integrals in using substitution
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integrals in using substitution
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integrals in using substitution
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integrals in using substitution
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integrals in using substitution
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integrals in using substitution
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is
A. 6
B. 0
C. 3
D. 4
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.11 [Page 347]
By using the properties of definite integrals, evaluate the integrals
`int_0^(pi/2) cos^2 x dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^(pi/2) (sin^(3/2) xdx)/(sin^(3/2) x + cos^(3/2)x) `
By using the properties of definite integrals, evaluate the integrals
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of definite integrals, evaluate the integrals
`int_(-5)^5 | x + 2| dx`
By using the properties of definite integrals, evaluate the integrals
`int_2^8 |x - 5| dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^4 x(1-x)^n dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^2 xsqrt(2 -x)dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of definite integrals, evaluate the integrals
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^pi (xdx)/(1+ sin x)`
By using the properties of definite integrals, evaluate the integrals
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^(2x) cos^5 xdx`
By using the properties of definite integrals, evaluate the integrals
`int_0^(pi/2) (sin "x" - cos "x")/(1+sin"x" cos "x") "dx"`
By using the properties of definite integrals, evaluate the integrals
`int_0^pi log(1+ cos x) dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
By using the properties of definite integrals, evaluate the integrals
`int_0^4 |x - 1| dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx `if f and g are defined as `f(x) = f(a-x) and g(x) + g(a-x) = 4`
Choose the correct The value of `int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is
A. 0
B. 2
C. π
D. 1
Choose the correct The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cos x))` dx is
A. 2
B. 3/4
C. 0
D. -2
NCERT solutions for Class 12 Maths Chapter 7 Integrals Exercise 7.12 [Pages 352 - 354]
Integrate the functions `1/(x - x^3)`
Integrate the functions `1/(sqrt(x+a) + sqrt(x+b))`
Integrate the functions `1/(xsqrt(ax - x^2)) ["Hint : Put x" = a/t]`
Integrate the functions `1/(x^2(x^4 + 1)^(3/4))`
Integrate the functions
`1/(x^(1/2) + x^(1/3)) ["Hint:" 1/(x^(1/2) + x^(1/3)) = 1/(x^(1/3)(1+x^(1/6))) put x = t^6]`
Integrate the functions `(5x)/((x+1)(x^2 +9))`
Integrate the functions `sinx/(sin (x - a))`
Integrate the functions `(e^(5log x) - e^(4log x))/(e^(3log x) - e^(2log x))`
Integrate the functions `cos x/sqrt(4 - sin^2 x)`
Integrate the functions `(sin^8 x - cos^8 x)/(1-2sin^2 x cos^2 x)`
Integrate the functions `1/(cos (x+a) cos(x+b))`
Integrate the functions `x^3/(sqrt(1-x^8)`
Integrate the functions `e^x/((1+e^x)(2+e^x))`
Integrate the functions `1/((x^2 + 1)(x^2 + 4))`
Integrate the functions `cos^3 xe^(log sinx)`
Integrate the functions `e^(3log x) (x^4 + 1)^(-1)`
Integrate the functions `f'(ax +b)[f(ax +b)]^n`
Integrate the functions `1/sqrt(sin^3 x sin(x + a))`
Integrate the functions `(sin^(-1) sqrtx - cos^(-1) sqrtx)/ (sin^(-1) sqrtx + cos^(-1) sqrtx) , x in [0,1]`
Integrate the functions `sqrt((1-sqrtx)/(1+sqrtx))`
Integrate the functions `(2+ sin 2x)/(1+ cos 2x) e^x`
Integrate the functions `(x^2 + x + 1)/((x + 1)^2 (x + 2))`
Integrate the functions `tan^(-1) sqrt((1-x)/(1+x))`
Integrate the functions `(sqrt(x^2 +1) [log(x^2 + 1) - 2log x])/x^4`
Evaluate the definite integrals `int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integrals `int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integrals `int_0^(pi/2) (cos^2 x dx)/(xos^2 x + 4 sin^2 x)`
Evaluate the definite integrals `int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integrals `int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integrals `int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integrals `int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x) dx`
Evaluate the definite integrals `int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following `int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following `int_0^4 xe^x dx = 1`
Prove the following `int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following `int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following `int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Prove the following `int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
Choose the correct `int dx/(e^x + e^(-x))` is equal to
(A) tan–1 (ex) + C
(B) tan–1 (e–x) + C
(C) log (ex – e–x) + C
(D) log (ex + e–x) + C
Choose the correct answers `int (cos 2x)/(sin x + cos x)^2dx` is equal to
A `(-1)/(sin x + cos x) + C`
(B) log |sin x + cos x | + C
(B) log |sin x + cos x | + C
(D) `1/(sin x - cos x)^2`
Choose the correct answers If f (a + b – x) = f (x), then `int_a^b x f(x )dx` is equal
A `(a+b)/2 int_a^b f(b-x) dx`
B `(a+b)/2 int_a^b f(b+x) dx`
C `(b-a)/2 int_a^b f(x) dx`
D `(a+b)/2 int_a^b f(x) dx`
Choose the correct answers The value of `int_0^1 tan^(-1) (2x -1)/(1+x - x^2)` dx is
(A) 1
(B) 0
(C) –1
(D) `pi/4`
Solutions for Chapter 7: Integrals
NCERT solutions for Class 12 Maths chapter 7 - Integrals
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Class 12 Maths CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT solutions for Mathematics Class 12 Maths CBSE, Karnataka Board PUC 7 (Integrals) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Class 12 Maths chapter 7 Integrals are Definite Integrals Problems, Indefinite Integral Problems, Comparison Between Differentiation and Integration, Integrals of Some Particular Functions, Indefinite Integral by Inspection, Some Properties of Indefinite Integral, Integration Using Trigonometric Identities, Introduction of Integrals, Evaluation of Definite Integrals by Substitution, Properties of Definite Integrals, Fundamental Theorem of Calculus, Definite Integral as the Limit of a Sum, Evaluation of Simple Integrals of the Following Types and Problems, Methods of Integration: Integration by Parts, Methods of Integration: Integration Using Partial Fractions, Methods of Integration: Integration by Substitution, Integration as an Inverse Process of Differentiation, Geometrical Interpretation of Indefinite Integrals.
Using NCERT Class 12 Maths solutions Integrals exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Class 12 Maths students prefer NCERT Textbook Solutions to score more in exams.
Get the free view of Chapter 7, Integrals Class 12 Maths additional questions for Mathematics Class 12 Maths CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.