Online Mock Tests
Chapters
Chapter 2: Inverse Trigonometric Functions
Chapter 3: Matrices
Chapter 4: Determinants
Chapter 5: Continuity and Differentiability
Chapter 6: Application of Derivatives
Chapter 7: Integrals
Chapter 8: Application of Integrals
Chapter 9: Differential Equations
Chapter 10: Vector Algebra
Chapter 11: Three Dimensional Geometry
Chapter 12: Linear Programming
Chapter 13: Probability
Solutions for Chapter 2: Inverse Trigonometric Functions
Below listed, you can find solutions for Chapter 2 of CBSE, Karnataka Board PUC NCERT for Class 12 Maths.
NCERT solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.1 [Pages 41 - 42]
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `cos^(-1) (sqrt3/2)`
Find the principal value of cosec−1 (2)
Find the principal value of `tan^(-1) (-sqrt3)`
Find the principal value of `cos^(-1) (-1/2)`
Find the principal value of tan−1 (−1)
Find the principal value of `sec^(-1) (2/sqrt(3))`
Find the principal value of `cot^(-1) (sqrt3)`
Find the principal value of `cos^(-1) (-1/sqrt2)`
Find the principal value of `cosec^(-1)(-sqrt2)`
Find the value of `tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`
Find the value of `cos^(-1) (1/2) + 2 sin^(-1)(1/2)`
Find the value of if sin−1 x = y, then
A) `0 <= y < pi`
B) `-pi/2 <= y <= pi/2`
c) `0 < y < pi`
d) `-pi/2 < y < pi/2`
Find the value of `tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to
(A) π
(B) `-pi/3`
(C) `pi/3`
(D) `(2pi)/3`
NCERT solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.2 [Pages 47 - 48]
Prove `3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove `3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the function in the simplest form: `tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the function in the simplest form: `tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Write the function in the simplest form: `tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Write the function in the simplest form: `tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of `tan^(-1) [2cos(2sin^(-1) 1/2)]`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of `tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Find the values of `sin^(-1) (sin (2pi)/3)`
Find the values of `tan^(-1) (tan (3pi)/4)`
Find the values of `tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Find the values of `cos^(-1) (cos (7pi)/6)` is equal to
(A) `(7pi)/6`
(B) `(5pi)/6`
(C) `pi/3`
(D) `pi/6`
Find the values of `sin(pi/3 - sin^(-1) (-1/2))` is equal to
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) 1
NCERT solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.3 [Pages 51 - 52]
Find the value of `cos^(-1) (cos (13pi)/6)`
Find the value of `tan^(-1) (tan (7x)/6)`
Prove `2 sin^(-1) 3/5 = tan^(-1) 24/7`
Prove `sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove `cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove `cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove `tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove `tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Prove `cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Prove `tan^(-1) ((sqrt(1+x) - sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))) = pi/4 - 1/2 cos^(-1) x. - 1/sqrt(2) <= x <= 1` [Hint: put x = `cos 2 theta`]
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Solve `2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve sin (tan–1 x), | x| < 1 is equal to
(A) `x/(sqrt(1-x^2))`
(B) `1/sqrt(1-x^2)`
(C) `1/sqrt(1+x^2)`
(D) `x/(sqrt(1+ x^2))`
Solve sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to
(A) `0, 1/2`
(B) `1, 1/2`
(C) 0
(D) `1/2`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solutions for Chapter 2: Inverse Trigonometric Functions
NCERT solutions for Class 12 Maths chapter 2 - Inverse Trigonometric Functions
Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Class 12 Maths CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT solutions for Mathematics Class 12 Maths CBSE, Karnataka Board PUC 2 (Inverse Trigonometric Functions) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Class 12 Maths chapter 2 Inverse Trigonometric Functions are Inverse Trigonometric Functions (Simplification and Examples), Properties of Inverse Trigonometric Functions, Graphs of Inverse Trigonometric Functions, Inverse Trigonometric Functions - Principal Value Branch, Basic Concepts of Inverse Trigonometric Functions.
Using NCERT Class 12 Maths solutions Inverse Trigonometric Functions exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Class 12 Maths students prefer NCERT Textbook Solutions to score more in exams.
Get the free view of Chapter 2, Inverse Trigonometric Functions Class 12 Maths additional questions for Mathematics Class 12 Maths CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.