NCERT solutions for Class 12 Maths chapter 2 - Inverse Trigonometric Functions [Latest edition]

Advertisement

Chapters

Advertisement
Advertisement

Solutions for Chapter 2: Inverse Trigonometric Functions

Below listed, you can find solutions for Chapter 2 of CBSE, Karnataka Board PUC NCERT for Class 12 Maths.


Exercise 2.1Exercise 2.2Exercise 2.3
Exercise 2.1 [Pages 41 - 42]

NCERT solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.1 [Pages 41 - 42]

Exercise 2.1 | Q 1 | Page 41

Find the principal values of `sin^(-1) (-1/2)`

Exercise 2.1 | Q 2 | Page 41

Find the principal value of  `cos^(-1) (sqrt3/2)`

Exercise 2.1 | Q 3 | Page 41

Find the principal value of cosec−1 (2)

Exercise 2.1 | Q 4 | Page 41

Find the principal value of `tan^(-1) (-sqrt3)`

Exercise 2.1 | Q 5 | Page 41

Find the principal value of  `cos^(-1) (-1/2)`

Exercise 2.1 | Q 6 | Page 41

Find the principal value of tan−1 (−1)

Exercise 2.1 | Q 7 | Page 42

Find the principal value of  `sec^(-1) (2/sqrt(3))`

Exercise 2.1 | Q 8 | Page 42

Find the principal value of `cot^(-1) (sqrt3)`

Exercise 2.1 | Q 9 | Page 42

Find the principal value of  `cos^(-1) (-1/sqrt2)`

Exercise 2.1 | Q 10 | Page 42

Find the principal value of `cosec^(-1)(-sqrt2)`

Exercise 2.1 | Q 10 | Page 42

Find the value of  `tan^(-1)(1) + cos^(-1) (-1/2) + sin^(-1) (-1/2)`

Exercise 2.1 | Q 12 | Page 42

Find the value of `cos^(-1) (1/2) + 2 sin^(-1)(1/2)`

Exercise 2.1 | Q 13 | Page 42

Find the value of if sin−1 y, then

A) `0 <= y < pi`

B) `-pi/2 <= y <= pi/2`

c) `0 < y < pi`

d) `-pi/2 < y < pi/2`

Exercise 2.1 | Q 14 | Page 42

Find the value of `tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to

(A) π

(B) `-pi/3`

(C) `pi/3`

(D) `(2pi)/3`

Exercise 2.2 [Pages 47 - 48]

NCERT solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.2 [Pages 47 - 48]

Exercise 2.2 | Q 1 | Page 47

Prove `3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`

Exercise 2.2 | Q 2 | Page 47

Prove  `3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`

Exercise 2.2 | Q 3 | Page 47

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`

Exercise 2.2 | Q 4 | Page 47

Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`

Exercise 2.2 | Q 5 | Page 47

Write the function in the simplest form: `tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`

Exercise 2.2 | Q 6 | Page 47

Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`

Exercise 2.2 | Q 7 | Page 47

Write the function in the simplest form: `tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`

Exercise 2.2 | Q 8 | Page 47

Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`

Exercise 2.2 | Q 9 | Page 48

Write the function in the simplest form: `tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a

Exercise 2.2 | Q 10 | Page 48

Write the function in the simplest form: `tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`

Exercise 2.2 | Q 11 | Page 48

Find the value of  `tan^(-1) [2cos(2sin^(-1) 1/2)]`

Exercise 2.2 | Q 12 | Page 48

Find the value of `cot(tan^(-1) a + cot^(-1) a)`

Exercise 2.2 | Q 13 | Page 48

Find the value of `tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`

Exercise 2.2 | Q 14 | Page 48

if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x

Exercise 2.2 | Q 15 | Page 48

if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.

Exercise 2.2 | Q 16 | Page 48

Find the values of `sin^(-1) (sin  (2pi)/3)`

Exercise 2.2 | Q 17 | Page 48

Find the values of  `tan^(-1) (tan  (3pi)/4)`

Exercise 2.2 | Q 18 | Page 48

Find the values of  `tan(sin^(-1)  3/5 + cot^(-1)  3/2)`

Exercise 2.2 | Q 19 | Page 48

Find the values of  `cos^(-1) (cos  (7pi)/6)` is equal to 

(A)  `(7pi)/6`

(B) `(5pi)/6`

(C) `pi/3`

(D) `pi/6`

Exercise 2.2 | Q 21 | Page 48

Find the values of `sin(pi/3 - sin^(-1) (-1/2))` is equal to 

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) 1

Exercise 2.3 [Pages 51 - 52]

NCERT solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Exercise 2.3 [Pages 51 - 52]

Exercise 2.3 | Q 1 | Page 51

Find the value of `cos^(-1) (cos  (13pi)/6)`

Exercise 2.3 | Q 2 | Page 51

Find the value of  `tan^(-1) (tan  (7x)/6)`

Exercise 2.3 | Q 3 | Page 51

Prove `2 sin^(-1)  3/5 = tan^(-1)  24/7`

Exercise 2.3 | Q 4 | Page 51

Prove `sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`

Exercise 2.3 | Q 5 | Page 51

Prove `cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`

Exercise 2.3 | Q 6 | Page 51

Prove `cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`

Exercise 2.3 | Q 7 | Page 51

Prove `tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`

Exercise 2.3 | Q 8 | Page 51

Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`

Exercise 2.3 | Q 9 | Page 52

Prove `tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`

Exercise 2.3 | Q 10 | Page 52

Prove `cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 

Exercise 2.3 | Q 11 | Page 52

Prove `tan^(-1)  ((sqrt(1+x) - sqrt(1-x))/(sqrt(1+x) + sqrt(1-x))) = pi/4 - 1/2 cos^(-1) x. - 1/sqrt(2) <= x <= 1` [Hint: put x =  `cos 2 theta`]

Exercise 2.3 | Q 12 | Page 52

Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`

Exercise 2.3 | Q 13 | Page 52

Solve `2 tan^(-1) (cos x) =  tan^(-1) (2 cosec x)`

Exercise 2.3 | Q 14 | Page 52

Solve the following equation for x:

 tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0

Exercise 2.3 | Q 15 | Page 52

Solve sin (tan–1 x), | x| < 1 is equal to

(A) `x/(sqrt(1-x^2))`

(B) `1/sqrt(1-x^2)`

(C) `1/sqrt(1+x^2)`

(D) `x/(sqrt(1+ x^2))`

Exercise 2.3 | Q 16 | Page 52

Solve sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to

(A) `0, 1/2`

(B) `1, 1/2`

(C) 0

(D) `1/2`

Exercise 2.3 | Q 17 | Page 52

Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`

Advertisement

Solutions for Chapter 2: Inverse Trigonometric Functions

Exercise 2.1Exercise 2.2Exercise 2.3

NCERT solutions for Class 12 Maths chapter 2 - Inverse Trigonometric Functions

Shaalaa.com has the CBSE, Karnataka Board PUC Mathematics Class 12 Maths CBSE, Karnataka Board PUC solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT solutions for Mathematics Class 12 Maths CBSE, Karnataka Board PUC 2 (Inverse Trigonometric Functions) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.

Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.

Concepts covered in Class 12 Maths chapter 2 Inverse Trigonometric Functions are Inverse Trigonometric Functions (Simplification and Examples), Properties of Inverse Trigonometric Functions, Graphs of Inverse Trigonometric Functions, Inverse Trigonometric Functions - Principal Value Branch, Basic Concepts of Inverse Trigonometric Functions.

Using NCERT Class 12 Maths solutions Inverse Trigonometric Functions exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Solutions are essential questions that can be asked in the final exam. Maximum CBSE, Karnataka Board PUC Class 12 Maths students prefer NCERT Textbook Solutions to score more in exams.

Get the free view of Chapter 2, Inverse Trigonometric Functions Class 12 Maths additional questions for Mathematics Class 12 Maths CBSE, Karnataka Board PUC, and you can use Shaalaa.com to keep it handy for your exam preparation.

Advertisement
Share
Notifications



      Forgot password?
Use app×