Advertisement

NCERT solutions for Class 11 Mathematics Textbook chapter 13 - Limits and Derivatives [Latest edition]

Chapters

Chapter 13: Limits and Derivatives

[Pages 301 - 303]

NCERT solutions for Class 11 Mathematics Textbook Chapter 13 Limits and Derivatives [Pages 301 - 303]

Q 1 | Page 301

Evaluate the Given limit `lim_(x -> 3) x + 3`

Q 2 | Page 301

Evaluate the Given limit: `lim_(x -> pi) (x - 22/7)`

Q 3 | Page 301

Evaluate the Given limit: `lim_(r -> l) pir^2`

Q 4 | Page 301

Evaluate the Given limit: `lim_(x -> 4) (4x + 3)/(x - 2)`

Q 5 | Page 301

Evaluate the Given limit: `lim_(x-> -1) (x^10 + x^5 +1)/(x -1)`

Q 6 | Page 301

Evaluate the Given limit: lim_(x -> 0) `((x+1)^5 - 1)/x`

Q 7 | Page 301

Evaluate the Given limit: `lim_(x- > 2) (3x^2 - x - 10)/(x^2- 4)`

Q 8 | Page 301

Evaluate the Given limit `lim_(x -> 3) (x^4 - 81)/(2x^2-5x - 3)`

Q 9 | Page 301

Evaluate the Given limit: `lim_(x-> 0) (ax + b)/(cx + 1)`

Q 10 | Page 301

Evaluate the Given limit: `lim_(z -> 1) (z^(1/3) - 1)/(z^(1/6) -1)`

Q 11 | Page 301

Evaluate the Given limit   `lim_(x -> 1) (ax^2 + bx  + c)/(cx^2 + bx + a), a+b+c != 0`

Q 12 | Page 301

Evaluate the Given limit: `lim_(x -> -2) (1/x + 1/2)/(x + 2)`

Q 13 | Page 301

Evaluate the Given limit `lim_(x -> 0) (sin ax)/ (bx)`

Q 14 | Page 301

Evaluate the Given limit: `lim_(x -> 0) (sin ax)/(sin bx), a, b != 0`

Q 15 | Page 302

Evaluate the Given limit `lim_(x -> pi) (sin(pi - x))/(pi (pi - x))`

Q 16 | Page 302

Evaluate the given limit `lim_(x ->0) cos x/(pi - x)`

Q 17 | Page 302

Evaluate the Given limit: `lim_(x -> 0) (cos 2x -1)/(cos x - 1)`

Q 18 | Page 302

Evaluate the Given limit `lim_(x -> 0) (ax +  xcos x)/(b sin x)`

Q 19 | Page 302

Evaluate the Given limit `lim_(x -> 0) sec x`

Q 20 | Page 302

Evaluate the Given limit `lim_(x -> 0) (sin ax + bx)/(ax + sin bx) a, b, a+ b != 0`

Q 21 | Page 302

Evaluate the Given limit `lim_(x -> 0) (cosec x -  cot x)`

Q 22 | Page 302

Evaluate the Given limit `lim_(x -> (pi/2))     (tan 2x)/(x - pi/2)`

Q 23 | Page 302

Find  `lim_(x -> 0)` f(x) and `lim_(x -> 1)` f(x) where f(x) = `{(2x + 3, x <= 0),(3(x+1), x > 0):}`

Q 24 | Page 302

Find  `lim_(x -> 1)` f(x) where `f(x) = {(x^2 -1, x < = 1), (-x^2 -1, x > 1):}`

Q 25 | Page 302

Evaluate `lim_(x -> 0) f(x)` where `f(x) = { (|x|/x, x != 0),(0, x = 0):}`

Q 26 | Page 302

Find `lim_(x -> 0)` f(x) where `f(x) = {(x/|x|, x != 0),(0, x = 0):}`

Q 27 | Page 302

Find `lim_(x -> 5) f(x)`, where f(x)  = |x| - 5

Q 28 | Page 302

Suppose f(x)  = `{(a+bx, x < 1),(4, x = 1),(b-ax, x > 1):}`  and if `lim_(x -> 1) f(x) = f(1)` what are possible values of and b?

Q 29 | Page 303

Let a1, a2, . . ., an be fixed real numbers and define a function f ( x) = ( x − a1 ) ( x − a2 )...( x − an ) .

What is `lim_(x -> a_1) f(x)` ? For some a ≠ a1, a2, ..., an, compute `lim_(x -> a) f(x)`

Q 30 | Page 303

If f(x)  = `{(|x| +  1,x < 0), (0, x = 0),(|x| -1, x > 0):}`

For what value (s) of a does `lim_(x -> a)`  f(x) exists?

Q 31 | Page 303

If the function f(x) satisfies `lim_(x -> 1) (f(x) - 2)/(x^2 - 1) = pi`, evaluate `lim_(x -> 1) f(x)`

Q 32 | Page 303

if `f(x) = { (mx^2 + n, x < 0),(nx + m, 0<= x <= 1),(nm^3 + m, x > 1):}`

For what integers m and n does `lim_(x-> 0) f(x)` and `lim_(x -> 1) f(x)` exist?

Advertisement
[Pages 312 - 313]

NCERT solutions for Class 11 Mathematics Textbook Chapter 13 Limits and Derivatives [Pages 312 - 313]

Q 1 | Page 312

Find the derivative of x2 – 2 at x = 10.

Q 2 | Page 312

Find the derivative of 99x at x = 100.

Q 3 | Page 312

Find the derivative of at = 1.

Q 4.1 | Page 312

Find the derivative of the following functions from first principle.

x3 – 27

Q 4.2 | Page 312

Find the derivative of the following functions from first principle.

(x – 1) (– 2)

Q 4.3 | Page 312

Find the derivative of the following functions from first principle.

`1/x^2`

Q 4.4 | Page 312

Find the derivative of the following functions from first principle.

`(x+1)/(x -1)`

Q 5 | Page 312

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)

Q 6 | Page 313

Find the derivative of `x^n  + ax^(n-1) + a^2 x^(n-2) + ...+ a^(n -1) x + a^n` for some fixed real number a

Q 7.1 | Page 313

For some constants a and b, find the derivative of (– a) (x – b)

 

Q 7.2 | Page 313

For some constants a and b, find the derivative of (ax2 + b)2

Q 7.3 | Page 313

For some constants a and b, find the derivative of

`(x-a)/(x -b)`

Q 8 | Page 313

Find the derivative of `(x^n - a^n)/(x -a)` for some constant a.

Q 9.1 | Page 313

Find the derivative of `2x - 3/4`

Q 9.2 | Page 313

Find the derivative of (5x3 + 3– 1) (x – 1)

Q 9.3 | Page 313

Find the derivative of x–3 (5 + 3x)

Q 9.4 | Page 313

Find the derivative of x5 (3 – 6x–9)

Q 9.5 | Page 313

Find the derivative of x–4 (3 – 4x–5)

Q 9.6 | Page 313

Find the derivative of `2/(x + 1) - x^2/(3x -1)`

Q 10 | Page 313

Find the derivative of cos x from first principle.

Q 11.1 | Page 313

Find the derivative of the following functions

sin x cos x 

Q 11.2 | Page 313

Find the derivative of the following functions: sec x

Q 11.3 | Page 313

Find the derivative of the following functions:

5 sec x + 4 cos x

Q 11.4 | Page 313

Find the derivative of the following functions:

cosec x

Q 11.5 | Page 313

Find the derivative of the following functions:

3cot x + 5cosec x

Q 11.6 | Page 313

Find the derivative of the following functions: 5sin x – 6cos x + 7

Q 11.7 | Page 313

Find the derivative of the following functions:

2tan x – 7sec x

Advertisement
[Pages 317 - 318]

NCERT solutions for Class 11 Mathematics Textbook Chapter 13 Limits and Derivatives [Pages 317 - 318]

Q 1.1 | Page 317

Find the derivative of the following functions from first principle:

−x

Q 1.2 | Page 317

Find the derivative of the following functions from first principle:

(–x)–1

Q 1.3 | Page 317

Find the derivative of the following functions from first principle:

sin (x + 1)

Q 1.4 | Page 317

Find the derivative of the following functions from first principle: 

`cos (x - pi/8)`

Q 2 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (x + a)

Q 3 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `(px+ q) (r/s + s)`

Q 4 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, rand s are fixed non-zero constants and m and n are integers): (ax + b) (cx d)2

Q 5 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, rand s are fixed non-zero constants and m and n are integers): `(ax + b)/(cx + d)`

Q 6 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `(1 + 1/x)/(1- 1/x)`

Q 7 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): ` 1/(ax^2 + bx + c)`

Q 8 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers) : `(ax + b)/(px^2 + qx + r)`

Q 9 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `(px^2 +qx + r)/(ax +b)`

Q 10 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, rand s are fixed non-zero constants and m and n are integers) : `a/x^4 = b/x^2 + cos x`

Q 11 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, rand s are fixed non-zero constants and m and n are integers):  `4sqrtx - 2`

Q 12 | Page 317

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, rand s are fixed non-zero constants and m and n are integers): (ax + b)n

Q 13 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r  and s are fixed non-zero constants and m and n are integers): (ax + b)n (cx + d)m

Q 14 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): sin (x + a)

Q 15 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r  and s are fixed non-zero constants and m and n are integers): cosec x cot x

Q 16 | Page 317

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `cos x/(1 +  sin x)`

Q 17 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers) : `(sin x + cos x)/(sin x - cos x)`

Q 18 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers) :  `(sec x - 1)/(sec x + 1)`

Q 19 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): sinn x

Q 20 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `(a + bsin x)/(c + dcosx)`

Q 21 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `(sin(x + a))/ cos x`

Q 22 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): x4 (5 sin x – 3 cos x)

Q 23 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (x2 + 1) cos x

Q 24 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (ax2 + sin x) (p + q cos x)

Q 25 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `(x + cos x)(x - tan x)`

Q 26 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `(4x + 5sin x)/(3x + 7cos x)`

Q 27 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers):  `(x^2 cos (pi/4))/sin x`

Q 28 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `x/(1 + tan x)`

Q 29 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): (x + sec x) (x – tan x)

Q 30 | Page 318

Find the derivative of the following functions (it is to be understood that abcdp, q, r and s are fixed non-zero constants and m and n are integers): `x/(sin^n x)`

Advertisement

Chapter 13: Limits and Derivatives

NCERT solutions for Class 11 Mathematics Textbook chapter 13 - Limits and Derivatives

NCERT solutions for Class 11 Mathematics Textbook chapter 13 (Limits and Derivatives) include all questions with solution and detail explanation. This will clear students doubts about any question and improve application skills while preparing for board exams. The detailed, step-by-step solutions will help you understand the concepts better and clear your confusions, if any. Shaalaa.com has the CBSE Class 11 Mathematics Textbook solutions in a manner that help students grasp basic concepts better and faster.

Further, we at Shaalaa.com provide such solutions so that students can prepare for written exams. NCERT textbook solutions can be a core help for self-study and acts as a perfect self-help guidance for students.

Concepts covered in Class 11 Mathematics Textbook chapter 13 Limits and Derivatives are Limits of Exponential Functions, Derivative of Slope of Tangent of the Curve, Theorem for Any Positive Integer n, Graphical Interpretation of Derivative, Derive Derivation of x^n, Algebra of Derivative of Functions, Derivative of Polynomials and Trigonometric Functions, Derivative Introduced as Rate of Change Both as that of Distance Function and Geometrically, Limits of Logarithmic Functions, Intuitive Idea of Derivatives, Introduction of Limits, Introduction to Calculus, Algebra of Limits, Limits of Polynomials and Rational Functions, Introduction of Derivatives, Limits of Trigonometric Functions.

Using NCERT Class 11 solutions Limits and Derivatives exercise by students are an easy way to prepare for the exams, as they involve solutions arranged chapter-wise also page wise. The questions involved in NCERT Solutions are important questions that can be asked in the final exam. Maximum students of CBSE Class 11 prefer NCERT Textbook Solutions to score more in exam.

Get the free view of chapter 13 Limits and Derivatives Class 11 extra questions for Class 11 Mathematics Textbook and can use Shaalaa.com to keep it handy for your exam preparation

Advertisement
Share
Notifications

View all notifications
Login
Create free account


      Forgot password?
View in app×